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Radix-2" Arithmetic for Multiplication by a Constant

Abdelkrim K. Oudjida, and Nicolas Chaillet, Member, IEEE

Abstract—In this paper, radix-2" arithmetic is explored to
minimize the number of additions in the multiplication by a
constant. We provide the formal proof that for an N-bit constant,
the maximum number of additions using radix-2" is lower than
Dimitrov’s estimated upper-bound (2./V/1og(XN)) using double base
number system (DBNS). In comparison to canonical signed digit
(CSD) and DBNS, the new radix-2" recoding requires an average
of 23.12% and 3.07% less additions for 64-bit constant,
respectively.

Index Terms—Double Base Number System (DBNS), High-
Speed and Low-Power Design, Linear-Time-Invariant (LTI)
Systems, Multiplierless Single/Mutiple Constant Multiplication
(SCM/MCM), Radix-2" Arithmetic.

I. BACKGROUND AND MOTIVATION

ANY applications in DSP and control, such as LTI

filters/controllers, involve the computation of a large
number of multiplications of one variable by a set of
constants. To be efficiently handled the implementation must
be multiplierless, that is, using exclusively additions,
subtractions, and left-shifts. This problem is called
single/multiple constant multiplication (SCM/MCM). Its
computational complexity still seems to be unknown. But
because the solution space to explore is so huge, one has to
use heuristics. Due to the importance of this issue, a large
number of heuristics have been proposed. They are classified
in four categories:

« Digit-recoding algorithms such as the canonical signed
digit (CSD) representation [1], Booth recoding [2], and
Dimitrov’s DBNS recoding [3];

o Common subexpression elimination (CSE) using pattern
matching performed after an initial digit-recoding. Typical
examples are Hartley [4], Lefévre [5], and Boullis [6];

« Directed acyclic graph (DAG) based algorithms. This
category includes Bernstein [7], MAG [8], H(k) [9], and
Hcub [10];

e Mixed algorithms combining CSE and DAG such as the
recent optimal algorithm BIGE [11].

Surveys and detailed comparative studies showing pros and

cons of various algorithms are given in [10][11].

Despite the large number of proposed heuristics, to our
knowledge, only three heuristics are accompanied with their
respective addition-cost complexity [11][12]. This issue is
very important as it informs on the heuristic capabilities and
limitations with regard to the constant bit-size (N). For low
values of N (N<32), H(k) [9] and Hcub [10] are, up to date,
considered as the best heuristics for SCM and MCM,
respectively. As long as their respective addition complexities
are unknown, there is no guarantee that they will preserve
their leading positions for high values of N.
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It was shown in [13] that the number of additions for an
N-bit constant in CSD is bounded by (N+1)/2—-1 and tends
asymptotically to an average value of (N/3)-8/9, which yields
33% saving over the naive add-and-shift approach. Pinch [14]
was the first to prove that the multiplication by a constant is
sublinear: O(N/(log(N))“) with a<1, where log is the natural
logarithm (Napierian). Based on the DBNS arithmetic [15],
Dimitrov [3] showed that the condition o<l in Pinch’s
complexity is not necessary, decreasing therefore the upper
limit to O(N/log(N)). Even more, in 2011, Dimitrov [16]
estimated the hidden constant in the big-O notation as being
less than 2. Since then, 2.N/log(N) is considered as the lowest
analytic upper-bound estimated so far. On the other hand,
according to [5], Ross Donelly was the first to determine in
2000 via an exhaustive search that 699829 is the smallest
value (20 bits) that can not be obtained with 5 adders or less.
Thong [11] did better with the exact BIGE algorithm as he
conjectured (no proof) that 7 additions are enough up to 32
bits. Though BIGE guarantees optimality via an exhaustive
search, it requires an exponential runtime and storage with
respect to N [11]. Nevertheless, with BIGE we can observe
how much any heuristic is far from optimality up to 32 bits.

The main purpose of this work is the minimization of the
total number of additions. Based on the radix-2" arithmetic [17]
[18], a new digit recoding is proposed with an upper limit

equal to [(N+1)/r+22-2], where,r=2. W(,/(N+l)‘log(2))/log(2),
W is the Lambert function, and [ | is the ceiling function (e.g.

[5.29]=6) . This upper-bound is lower than 2.N/log(N) for any

value of N. The method described in this paper is actually a
variant of Pinch's method: instead of splitting the binary
representation into blocks of fixed weight, it is split into blocks
of fixed lengths (7).

The paper is organized as follows. Section I outlines the
need of addition-cost complexity for large constant bit-widths.
Section II introduces the radix-2" recoding for multiplication
by an N-bit constant, while Section III determines its upper-
bound in number of additions and compares the results to
existing heuristics. Section IV presents an illustrative example.
Finally, Section V gives some concluding remarks and
suggestions for future work.

II. RADIX-2" FOR MULTIPLICATION BY AN N-BIT CONSTANT
A non-negative N-bit constant C is expressed in radix-2" as:

(N+1)/r-1
C= i("rj—l +20¢,; +21c, +22¢),, + -+ 252 x 217
j=0
(N+1)/r-1
= Qj x 21

j=0
where ¢ =c, =0 and r e N*. For simplicity purposes and

j+r-2 2r-1 er+r—1)

(1)

without loss of generality, we assume that r is a divider of
N+1. In eq. (1), the two’s complement representation of the



constant C is split into (N+1)/r two’s complement slices (O ),

each of 7 bit length because it goes from 2° to 2. However,
Q; needs an additional bit (¢, 1) equal to the most significant

bit of the previous digit ({;_;), which could be seen as some

form of carry due to the use of signed digits; it comes from the
following formula: —2""¢,,, %27 +¢,,, x2 V" = ¢, %27
This formula expresses the transformation of the conventional
radix-2" representation to the signed-digit radix-2" one.

A digit-set DS (2") corresponds to eq. (1), such as

(N+1)/r-1
XxQ;x217. (2)
=0
The sign of the Q; term is given by the ¢, bit, and
k, . .
‘Qj‘:zwmj, with k,€{012,...,r-1} and mjeOM(z’)U{O}, where
OA/(zr):{ 1,3,5,,,_,2r—1_1}. OM(zr) is the set of odd positive
digits in radix-2" recoding, with ‘OM(T) =27 To ‘Qj‘:o
corresponds m;=0. Finally, the product can be expressed as
(N+1)/r-1 A
follows: CxXx= 3 (-1)71x (mjxX)XZ’f*kf )
Jj=0
Unlike the multiplication by a variable (YxX) where the
entire set of partial-products (m;xX) must be precomputed,
only a subset is needed in the multiplication by a constant
(CxX). In fact, the number of partial-products is equal to the
number of different values m; induced by the encoding process
of the (N+1)/r slices (terms Q). Therefore, the generation of
partial products (PP) consists first, if m#0, in computing the
PP mxX if it has not been precomputed before. It is then
submitted to a hardwired left-shift of rj+k; positions, and

Thus, the product becomes: CxX =

finally, conditionally negated (- 1)+~ depending on the sign
bit ¢, of O;. An illustrative example is given in Section IV.

III. MAXIMUM NUMBER OF ADDITIONS FOR AN N-BIT CONSTANT

On the one hand, there are (N+1)/r iterations in eq. (3).
Each iteration generates one PP. Thus, the maximal number of
PP is (N+1)/r, which requires a maximum of N,,=(N+1)/r—1
additions. On the other hand, a maximum of 27-2 —1 non-
trivial PP {3xX, 5xX, 7xX, ..., (2"'=1)xX} can be invoked
during the PP generation process. They are built using the
binary method, from the least significant bit to the most
significant bit. That is, the m; elements 3, 5, 7, ..., 2711 are
built one after the other, each time by using a single addition
between an element that has already been built and a power of
two. This process is summarized by the following recurrence
relation: m, =27 +d , where p<r—2 because m; < 21, and
0<d<2P
Theorem 1. In radix-2', the precomputation of the entire set of
non-trivial PP {3xX, 5xX, 7xX ...,(2”1—1)><X} yields an
adder-cost and an adder-depth of 2"*~1 and r-2, respectively.
Proof. Since each new non-trivial digit requires only one
addition (recurrence relation), the adder-cost is the number of

non-trivial digits: N,, = ‘OM(Z’) -1=2"7-1.

As the binary method is used, the adder-depth is deduced
from the maximum number of non-zero bits in the binary
representation of a digit: (»—1)—1=r—2. Since there are (N+1)/r
PP, the maximum adder-depth (Ath) in cascaded adders is:

Ath(r) ={N+1—l+r—2—‘=[N+l+r—3—‘-

r r
We illustrate the construction process of non-trivial PP with
the following radix-2° example:
oM(26)={1,3,5,7,9, 11,13, 15,17, 19, 21, 23, 25, 27, 29, 31}
={1JUR! +1=3]U{22 +1=5,22+3=7)U{23 +1=9, 23 +3=1],
234+5=1323+7=15U{24 +1=17, 24 +3=19, 24 +5=2],
2447=23,24+9=25, 24+11=27, 24+13=29, 24+15:31} .
Thus, the PP (mX) corresponding to 0]\4(26) are
subsequently calculated in the following order (6—2=4 steps):
{3xX} 5 {5xX,7TxX } 5 {9%X, 11xX,13xX,15xX } ;
{17xX,19%xX, 21xX, 23xX, 25%X, 27xX, 29%X, 31xX }.
Fig.1 provides all necessary details for hardware
implementation. It now becomes clear that eq. (3) involves
only additions, subtractions, and left-shifts. Note that right-
shifts are not allowed since r, j, and k; are non-negative
integers.
Consequently, the total number of additions required by
radix-2" is equal to:

N+1
Upb(r) = Ny +No :[

r

Upb(r) is minimal for » =2-W(,/(N +1)olog(2))/log(2) , Where
W is the Lambert Function. The minimum is obtained for one
of the two enclosing integers of » (since the upper limit is a
convex function of r), and both must be tested. Table I gives
the values of r that lead to the minimum number of additions
for N ranging from 8 to 8192. It also gives the corresponding
adder-depths. Fig.2 depicts the upper-bounds in number of
additions for CSD, DBNS, and RADIX-2".

Table I
UPPER-BOUND (Upb), ADDER-DEPTH (ATH), AND » VALUES FOR A
NON-NEGATIVE N-BIT CONSTANT USING RADIX-2"

+2r-2 - 2—‘ .

16 [32 |64 [128 |256 |512 [1024 [2048 |4096 8192

3 14 |5 5 6 6 7 8 8 9

8
3
Upb(»)|3 | 6 |11 [19 | 32 | 57 [100 | 177 | 319 | 575 1037
Ath(r) |3 | 6 |10 |15 |28 |46 |89 | 151 | 262 | 518 917
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Fig. 2. Upb comparison for an N-bit constant.




2'xx X

For radix-2°, a maximum of 2°%-1=15
additions are necessary, carried out in
6-2=4 steps in the worst case.

Step #1
V
2% 3XX 22xx X
@ @/ Step #2
%X TxX 2’xX5xX 23><X 3><X 2xX X
Step #3

gggy

24X 15%X 29X 13xX 245X 11xX 2*xX 9xX 2*xX 7xX 2“xx 5xY 29X 3xX 2%xX X

gey

31xX 29xX 27xX 25xX

FYYY Y-

21xX 19xX 17xX

Fig. 1. Sequential order of computation of the entire set of partial-products needed by radix-2°.

As for the average number of additions (Avg), it has been
exhaustively calculated for values of C varying from 0 to 2"~1,
for N=8, 16, 24, and 32. But for N=64, we have calculated
Avg using 10°, 10°, 10° and 10" uniformly distributed random
values of C. While the difference between the four obtained
results is insignificant (<10°*), the value Avg oscillates around
15.7165 additions. Results are reported in Table II. For N=64,
RADIX-2" uses 23.12 % less additions than CSD. This gain
seems to grow linearly for low values of V.

TABLE II

RADIX-2"VERSUS CSD: AVERAGE NUMBER OF ADDITIONS (Avg)
AND UPPER-BOUND (Upb)

Constant CSD RADIX-2" Saving
Bit-width N Avg Upb Avg Upb (Avg,%)
8 1.7882 4 1.8645 3 —4.2668"
16 4.4445 8 4.5127 6 —1.5344"

24 7.1111 12 6.7994 9 4.3832

32 9.7777 16 8.9627 11 8.3352

64 20.4444 | 32 15.7165% | 19 23.1256

*: Obtained from 10" uniformly distributed random values of C.
+: RADIX-2" average is higher than CSD’s.

CSD Avg = (N/3)-8/9 and CSD Upb=|(N-+1)/2~1].

Regarding DBNS, Dimitrov [3] calculated Avg and Upb
from 10° uniformly distributed random constants, for 32 and
64 bits only (Table III). Note that DBNS Upb will be higher if
the worst cases are not attained by the pattern of 10> constants.

We have also compared RADIX-2" to some non-recoding
heuristics (CSE and DAG) based on programs and numeric

Table IIT
RADIX-2"VERSUS DBNS : AVERAGE NUMBER OF ADDITIONS (Avg)
AND UPPER-BOUND (Upb)

Constant DBNS [3] RADIX-2" Saving
Bit-width N|  Avg Upb Avg Upb (Avg,%)

32 =005 * 13* 8.9627 11 0.9646

64 16.2151* | 21* | 15.7165 19 3.0749

+: Taken from Fig.l in [3]; *: Obtained from 10° uniformly
distributed random values of C.

data kindly provided by Lefévre and Voronenko. While Fig. 3
shows lower values of Avg for non-recoding heuristics as
expected due to a larger exploration of the solution space,
Table IV exhibits rather a higher value of Upb for Bernstein's
heuristic. Significant conclusion: a lower Avg does not
guarantee a lower Upb.
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Fig. 3. Avg comparison for an N-bit constant.

Another performance indicator of the recoding is the
smallest value that requires ¢ additions, for ¢ varying from 1
to the upper-bound of the recoding. Table V summarizes this
information for a 32-bit constant. Note that starting from ¢=7,
higher values are given by RADIX-2" compared to CSD.

IV. ILLUSTRATIVE EXAMPLE

The product 10599%X is first calculated in CSD, DBNS, and
RADIX-2". Let us note that (10599);,=(10100101100111),.
Psp=(Xx2 )+ X2 MH XX 2~ Xx2 (XX 20 HXx27)-X.
Pppys=(( X1x2')+ X))+ (X<2P)+ (0<2°)-X,
with  X=(( Xox2")+Xo)+( Xx2%) and Xe=(Xx2%) [3].

In order to express the product in Pgypy, a two’s
complement representation of (10599),, is necessary, which is
(010100101100111),. Thus, in two’s complement notation, the
constant size becomes N+1 (14+1=15 for 10599).



TABLE IV

RADIX-2" VERSUS NON-RECODING ALGORITHMS: RUNTIME COMPLEXITY
AND NUMBER OF ADDITIONS OF SOME SPECIAL CASES

TABLE V

RADIX-2"VERSUS CSD, LEFEVRE'S CSP, AND EXHAUSTIVE SEARCH:

SMALLEST VALUES UP TO A 32-BIT CONSTANT

: Number of Lefevre’s Exhaustive
Algorithm (84AB5+)H (64AB5§)H (5959595+B)H Runtime Additions (q) CSD RADIX-2" CSP* [5] search [5]
N=20 N=23 N=31 [10] . 3 3 3 3
BIGE [11] 4 5 6 02" 2 I 11 1 11
Bernstein [7] 8¢ 7 8 o2 5] 3 43 43 43 43
Hcub* [10] 4 6 _ 0(N6) 4 171 139 213 683
5 683 651 1703 14709
BHM™ [19] > ! - ow?) 6 2731 2699 13623 699829
Lefévre’s CSP [5] 4 6 9 o) 7 10923 33419 174903 | 171398453"
RADIX-2" 5 7 10 ow) 8 43691 526491 1420471 —
N: Constant bit-size; +: In RADIX-2", a zero bit is added in the MSB 9 174763 8422027 13479381 -
position to ensure a non-negative value of the constant in the recoding. 10 699051 134744219 - -
G: Greater than RADIX-2" Upb; RADIX-2" Upb=7, 8, and 10, for N=20, 23, 11 2796203 2155905675 - -
and 31, respectively; *: Values are delivered by Spiral web version [20], 12 11184811 - — -
limited to 26 bits; X: Optimal number of additions. 13 44739243 — — —
The BIGE optimal solutions for the indicated values are obtained as follows: 14 178956971 - - -
(84AB5)y : 15= (2%)-1 ;3825 = (15x2%)-15 ; 19125 = (3825x2%)+3825; 15 715827883 — — —

543413 = (2")+19125.

(64AB55)y : 255 = (2%)-1; 65281 = (255x2%)+1; 1109777 = (65281x2%)+
65281; 5548885 = (1109777x2%)+1109777; 6597461 = (22°)+5548885.
(5959595B)y : 257= (2°)+1; 16843009= (257x2'9)+257; 16843011= (2)+
16843009; 50529027 = (16843009x2)+16843009; 421075227 =
(50529027x2%) +16843011; 1499027803 = (16843009%2°)+421075227.

To N=14 corresponds r=3 (see Upb formula). For C=10599,
eg. (1) and (3) become respectively:

C= in x23 Jand  Prapiy = 24:(—1)03!'*2 x (m;x X )x 237k
Jj=0 Jj=0

Fig.4 depicts the five terms Q;. To determine the unknown
values c3;+2, mj, and k;, the radix-2° look-up table (Table VI) is
indexed by the terms Q. Referring to Table VI, the triplets
(c312, my, ky) corresponding to Qo, O1, O, Os, and O, are
(1,1,0), (1,3,0), (1,1,1), (1,3,0), and (0,3,0), respectively. The
recoding of C=10599 involves the precomputation of the PP
3xX. Consequently, we can write:
Prapix= (33X)x2" = (3xX)x2” — (1xX)x2" — (3xX)x2* — (1xX)

= (Xpx2"%) = (Xpx2”) - (X27) = (Xpx2°) ~ X,

with Xp= (Xx2)+X .

0=-3 0=~
0101 00|1'0 1000011 0,
0i=3 0,=-1x2' QOp=-1

|014 C13 C12 €11 Cip €9 Cg C7 Cg Cs5 C4 C3 C2 C1 Co Cfll

C =04 x212 40y x2%+ 0, x26 + 0y x23 + 0y =(10599),

¢, Cs, C3, C11, C14 are sign bits. |L| &l
15+1 bits  3+1 bits

Fig. 4. Partitioning of (10599),, in radix-2°.

It has to be noted that for C=10599, Pcsp and Ppgys require
both 6 additions, while Pgpyrequires 5. The naive shift-and-
add approach would have required 7 additions. We assume
that addition and subtraction have the same area/speed cost,
and that shift is costless since it can be realized without any
gates, i.e. just by using hard wiring.

Simplifications in eq. (3) are possible in case two
consecutive terms Q;and Oy with opposite signs exhibit pairs
(m; , k) of the form (1, »~1) and (1, 0), respectively. This is
illustrated by the two following possibilities:

*: Lefévre calculated the values for g up to 9. This means that the common
subpattern algorithm (CSP) exhibits an Upb > 9 among all 32-bit constants.
+: This is the sole value which has not been confirmed by Lefevre’s
exhaustive algorithm. It has been found only by Donelly [5], using left-
shifts exclusively. If "right-shifts" are allowed, the value is strictly higher
since the BIGE solution using right-shifts gives 6 additions, as follows:
5= (2%)+1; 639 = (5x27)1; 317 = (639-5)x27"; 5194045 = (317x2")+317;
171393341 = (317x2'%)+5194045; 171398453 = (639%2°)+171393341.
Thong [11] conjectured that 7 additions are enough up to 32 bits, allowing
right-shifts (exhaustive BIGE algorithm). It has been proved via RADIX-2"
heuristic that 11 additions are sufficient up to 32 bits, using left-shifts only.

."+X><2r(/+1) _szrj+(r—1) i”_:_”_i_szrj-%—(r—]) f...
e X X 270D x o 20D oy 2D

Another interesting idea is to include redundancy in the
terms Q; of eq. (1). These two tricks will decrease the average
number of additions in RADIX-2" (Table II, III, and Fig. 3).

In addition to higher compression capabilities of RADIX-2"
compared to CSD and DBNS, its runtime complexity is
linearly proportional to N as shown by eq. (1). Moreover the
required memory space is very small (for a §192-bit constant
corresponds a look-up table of 2°'=1024 entries). These two
features make RADIX-2" very useful for huge constants.

TABLE VI
RADIX-2’ LOOK-UP TABLE
9 m; | k;
C3j42 | C3j+1 | €3 |C3j-1
0 00| 0]O|O
0 0|0 1]1]0
0 0 |1]0]1]0
0 0|11 ]1]1
0 1 (0] O0]1|1
0 1 (0| 1]3]0
0 1 {1{0]3]0
0 1 |11 ]1]2
1 00| 0]1]2
1 0|0 1]3]0
1 0 |1]0]3]0
1 0 1 1 111
1 1 0] 0])1]1
1 1 0] 1 110
1 1 1 0]J1]0
1 1 (1| 1]0]0
Note that for radix-2°,

kje{ 0,1,2} and m; e{0,1,3}.



Since the introduction of H(k) [9] in 2004, CSE heuristics
have outperformed DAGs at SCM [11]. This was achieved by
applying CSE to each possible signed-digit (SD) form of the
constant. Likewise, the search space of CSE can be expanded
considering RADIX-2" recoding instead of SD representation.
For such a goal (SCM/MCM), Lefévre’s CSP heuristic [5]
stands as the best CSE candidate for its lower computational
complexity O(N?) in comparison to its CSE counterparts [10].

Many conversion techniques from unsigned or two’s
complement number to its CSD form are proposed to reduce
the hardware complexity and increase the speed of variable
multipliers [21]. Based on RADIX-2", we proposed several
conversion techniques and determined the most efficient one.
For more details on our extensive work on RADIX-2"
multiplication problem, reader is referred to [22] [23] [24].

V. CONCLUSION AND FUTURE WORK

Based on radix-2" arithmetic, we have developed a new
linear-time recoding (RADIX-2") accompanied with its upper-
bound complexity. The latter is the lowest upper-bound known
so far for the multiplication by a constant. While the bound is
for a minimal set of operations (additions, subtractions, and
left-shifts), it remains valid if any other operation (such as
right-shifts) is allowed.

Not only RADIX-2" achieves better compression ratio than
DBNS and CSD, which yields more speed and less area and
power consumption, but also stands as a practical alternative
to non-recoding heuristics for large constant bit-widths.
Further improvements of RADIX-2" are possible using
redundancy in the recoding.

Our current work deals with exact analytic expressions of
the average number of additions as well as the minimal adder-
depth of RADIX-2", which are still to be determined.
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