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Radix-2" Arithmetic for Multiplication by a Constant:
Further Results and Improvements

Abdelkrim K. Oudjida, Nicolas Chaillet, and Mohamed L. Berrandjia

Abstract—In a previous work we proposed a new sublinear-
runtime recoding heuristic for the multiplication by a constant,
accompanied by its upper-bound complexity. In this brief,
further results are provided, namely, the analytic expressions of
the average number of additions and the maximum adder-depth.
Improvements to the proposed heuristic are considered as well,
using a redundant recoding followed by a common-digit-
elimination step.

Index Terms— High-Speed and Low-Power Design, Linear-
Time-Invariant (LTI) Systems, Multiplierless Single/Mutiple
Constant Multiplication (SCM/MCM), Radix-2" Arithmetic.

I. BACKGROUND AND MOTIVATION

Based on the radix-2" arithmetic, we introduced in the
preceding work [1] a new sublinear-runtime recoding
heuristic (RADIX-2") for the multiplication by a constant with
an upper-bound equal to [(N+1)/r+2rf2 —2], where, N is the

constant bit-length, r=2. W(J (N+1)-log(2) )/log(Z), Wand [ ] are

the Lambert and ceiling functions, respectively. We obtained
the currently best known proved upper-bound on the exact
number of additions for SCM. While RADIX-2" shows a clear
superiority over digit-recoding algorithms (CSD [2] and
DBNS [3]), the comparison to non-digit-recoding algorithms
(Bernstein [4], Lefévre [5], BHM [6], Hcub [7], and MAG [8])
exhibits mitigated results. Non-recoding algorithms are better
than RADIX-2" when considering the average (4vg) number
of additions, but not necessarily better regarding the maximum
number of additions (Upb). Thus, we came to a significant
conclusion: a lower Avg does not guarantee a lower Upb.

Avg, Upb, and adder-depth (Ath) are the most commonly
used metrics in SCM/MCM. Avg informs on the compression
performance of the heuristic. For a nonnegative N-bit constant,
Avg is calculated as the mean number of additions for values
varying from 0 to 2"~1. Whereas Upb denotes the worst case
in number of additions, as for each heuristic there exists a
specific set of constants that are hard to compress. Ath is
rather a measure of the critical path in number of cascaded
adders. Reducing Ath not only improves the speed, but
decreases the power consumption as well [9].

Developing a predictable heuristic, that is, with known Avg,
Upb, and Ath complexities, gives a precise idea on how the
heuristic evolves with respect to the size N. This much helps
to decide early in the design process whether a given heuristic
can fit one’s specification requirements. To our knowledge,
among all existing heuristics only CSD and RADIX-2" are
predictable. While both Avg and Upb complexities are known
for CSD, only Upb is known so far for RADIX-2"[1].
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The main purpose of this work is to make RADIX-2" a fully
predictable heuristic. In addition to Upb, we determine the
analytic expressions for Avg and Ath. We also provide the
theoretical background showing that the R3 algorithm [10] is a
variant of RADIX-2" with an improved 4vg and the same Upb
and Ath.

This brief is organized as follows. Section I outlines the
necessity for a fully-predictable heuristic. RADIX-2" Avg and
Ath are introduced in Sections II and 111, respectively. Section
IV treats the overflow safety in the fixed-point representation,
while Section V shows how RADIX-2" can be improved using
a redundant recoding. Finally, Section V provides some
concluding remarks and suggestions for future work.

II. RADIX-2": AVERAGE NUMBER OF ADDITIONS (4vg)
A nonnegative N-bit constant C is expressed in radix-2" as
C :(N+%'(;ij,l +20¢,; +2lc, +22¢,, +o 0+ 20
i=0
(Nil /r—1

= Qj x 21 5
Jj=0

where ¢, =c, =0 and r € N*. In (1), the two’s complement

2 —_or-lep j
Crj+r—2 2r er+r71) x 27

(1)

representation of C is split into [(N+1)/r] slices (Q,), each of

r+1 bit length. Each pair of two contiguous slices has one

overlapping bit. A digit-set DS(Z’) corresponds to (1), such as
0, eDS2")={-2", -2 11,...,-1,0,1,..., 27 —1,27 .

The sign of the Q; term is given by the ¢, bit,
and [Q|=2" xm;, with k {012, 7—1, and m, eoM2' )Ul0.1};
where OM(Z’):{3,5,7,...,2r—1—1}. OM(2’) is the set of odd
=271

positive digits in radix-2" recoding, with ‘OM(T)

Since each slice Q; comprises r+1 bits, the total number of
the different bit-combinations is 2""'. According to (1), only
two combinations produce O; = 0: in case all the r+1 bits are
equal to “0” or “1”. Hence, the average number of non-null Q;

terms is equal to (2”1 _2)/ 21 =1-27". Each Q#0 generates
one partial product (PP). Thus, the average number of PPs in
the [(N+1)/7] slices is: Avg,, =(1-27 )x[(N +1)/7]-

orke

such as m; =2xk+1. To set the correspondence between j and

For each m; EOMT) there exists an integerke{l,z,...,

k, m; is denoted my. The number of occurrences (O,.) of my

among the 2”"' combinations of 0 is

Occ(mjk)=4xlog2{ 2

r—1 ) (2)
2xk+1
The factor 4 in (2) is due to the fact that each occurrence of

my, in the positive and negative part of DS(T) is double (see



Table VI in [1]). The reason is that the c¢,; ; and c,; bits in (1)

have the same influence (cg/71x2°+c¢;x2°+ ) on the Q; term.
Therefore, the probability (P) that mj; occurs among 2!
combinations is P\m, |=0,\m, |/ 2. We deliberately employ

“probability” instead of the “average” to facilitate the
demonstration, but actually the two notions have the same
meaning. Now, the probability that mj occurs in the slice Q;
knowing that it has not occurred in the slices preceding the
slice j is (Bayes’s theorem):

Pl ) _ Plom)x[1-Plmy)}”

P(mjk/j): P(]) = |

The probability that any(v) mj, for k=1,.‘OM(2r)

= Plmje)x[1- Py )}

, occurs

in the slice Q; knowing that it has not occurred in the slices

joud2)
> Plm,, /j). Note that
1

preceding the slice j is P(ijk / j):

the P(mjk / j) are mutually exclusive, since one and only one

odd-digit (m;;) occurs in the slice j. Consequently, the average

number of generated odd-digits considering all slices is
[(N+1)/r ]

Avg,= 2 PWm, ) j).

j=0
Hence, the average number of additions for RADIX-2" is
Avg=2-1+4dvg,, + Avg,, 3)

> +(1-27 )x[(N+1)/7] +RN§M {zng(m,-k)x [1—Plom, ) }

Avg .. does not take into account the fact that for >4 some
odd-digits require more than one addition. For instance, the
digit 11 requires 2 additions. But if the digit 3 occurs in the
same recoding, 11 will need just one addition since 11=2°+3.
However, we proved in [1] that Avg,, <2 -1 (see Theorem
(1) in [1]). Consequently, we can say that Avg is bounded by

—1+Avg,, +Avg,, < Avg <-2+Avg, + 2

We also proved in [1] that to get the minimum number of

additions (Upb), r must be equal to

Using the two Avg limits, we have bounded the average for
N varying from 64 to 8192. Results are reported in Table I. It

has to be noted that for 7<4, Avg=-1+ Avg,, + Avg,,

We observe that for RADIX-2", Avg is very close to Upb.
The reason is that the average of the null Q; digits is very low:

arglv0, =0)=2ox[(v+1) /71=[W+/r] Note that RADIX-2"

provides 50% saving over CSD in Avg for N=1134.

Theorem (1) in [1] allows building the entire set of odd-
digits in just -2 stages of cascaded additions. Since there are
[(N+1)/r] slices, the total number of cascaded adders is

Ath=[(N+1)/r|-1+r=2=[(N+1)/r|+r-3 (5)

Based on the values of 7 given by (4), we have calculated
Ath and grouped the results in Table I. For a serial
implementation (adders connected in series), a saving of
slightly more than 50% over CSD is achieved at N=64. While
for a parallel implementation based on a tree structure, CSD
Ath is lower than RADIX-2" Ath for any value of N>24. As for
Upb=[(N+1)/r]+27% -2, 50% saving is attained at N=128.

III. RADIX-2": A LOWER ADDER-DEPTH (A4th)

Equation (4) ensures a minimum Upb, whereas lower Ath
values are still possible. Any value of r, such as

r<2-w(N +1)-log(2))/ log(2) produces both higher Upb and Ath.

While the opposite, that is, »>2-W (N +1)-log(2))/log(2) leads to
a lower Ath but a higher Upb. To garantee a reasonable
balance, we set as a condition that the entire number of odd-
digits must be less or equal than the total number of slices

(lomtzr)| <[(N+1)77]). (6)

This condition avoids generating more odd-digits (22 1)

than it is actually invoked by the recoding process. Thus,
solving (6), a balanced solution for a lower Ath is found with

r=W(4.(N+1). log2))/ log(2)- @)

Table II indicates the values of r that yield a lower Ath,

along with its corresponding Upb and Avg. Note that both (7)

and (4) provide exactly the same results for N<20, either in

Ath, Upb, or Avg. Starting from N>21, lower Ath are obtained

r ZZ'W(\/(N +1)'10g(2))/ log(2), “4) using (7) but at the expense of higher Upb and Avg as
where W is the Lambert function. indicated by Table I and II. For instance, for N=256 equation
TABLE I
RADIX-2" VERSUS CSD: Avg, Ath, and Upb FOR AN N-BIT CONSTANT
N 3 16 32* 64* 128 256 512 1024 2048 4096 8102
r 3 3 3 5 5 6 6 7 8 8 9
] min 1644 | 3037 54.00 98.11 17419 | 31343 | 57241 103338
RADIX-2" | fax | 186 431 8.96 | 1850 | 3118 56.32 98.65 | 17585 | 317.99 | 57299 | 103522
Avg CSD 2.11 477 | 1011 | 2077 | 42.11 84.77 170.11 | 34077 | 682.11 | 1364.77 | 2730.11
Saving (%) 1.19 545 1137 | 1569 | 2692 34.92 4216 4363 5371 58.03 62.11
P 3 6 10 15 28 76 89 151 262 518 917
RADIX-2" | 7 3 4 6 7 8 10 11 13 15 16 17
7 8 16 32 64 128 256 512 1024 2048 4096
Ath CSD / 3 4 5 6 7 8 9 10 11 12 13
Saving (% . | 2500 | 25.00 | 37.50 53.12 56.25 64.06 6523 70.50 7441 74770 77.61
aving (%) | ;" | 0000 | 0000 |-2000 | -1666 | -1428 | —2500 | —2222 | 3000 | 3636 | -3333 -30.76
RADIX-2' 3 6 11 19 32 57 100 177 319 575 1037
Upb CSD 4 3 16 32 64 128 256 512 1024 2048 4096
Saving (%) 2500 | 2500 | 3125 | 4062 | 50.00 55.46 60.93 6542 68.84 71.92 74,68

N is the bit-size of a nonnegative constant; r=2-W (,/(N +1)-log(2) )/ log(2) . For N>64, the saving in Avg is calculated considering (min+max)/2.

*: For N=32, both =3 and r=4 produce the same Upb, but =4 yields lower Ath. The same holds true for N=64 with =4 and »=5.

...: Serial implementation (adders connected in series); /: Parallel implementation based on a tree structure. For RADIX-2", Ath™= |_(N +l)/ r-|+r—3,
and Ath'=[log,[ (N +1)/r[|+r=2. For CSD, Avg=(N+1)/3-8/9, Upb=[(N+1)/2]-1, dth=[(N+1)/2]-1, and CSD 4eh"=[log,[(N +1)/2]].
Erratum: In [1], we took CSD Avg =(N/3)—8/9, which is the average of a two’s complement N-bit constant (see the proofin [11]).



TABLE 11
Ath, Upb, Avg, AND r VALUES FOR AN N-BIT CONSTANT USING RADIX-2"
N 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
r 3 5 5 6 7 8 8 9 10 11

8
3
Arh’| 3 6 9 15 25 41 70 134 234 417 753
3
8

Upb 6 13 19 36 67 127 191 354 664 1255

Ave |1 9.21 (16.44{30.42(54.39( 99.36 (176.30(320.61|589.61|1091.70
12.78]18.59|35.65|66.71|126.74|190.49|353.55|663.59|1254.53

N is the bit-size of a nonnegative constant; r =W (4.(N +1). log(2))/ log(2).

...: Serial implementation.

6|4.51

(7) achieves a reduction of 10.86% over (4) in Ath, while it
causes an increase of 17.54% and 9.77% in Upb and Avg,
respectively. Contrary to Avg values corresponding to (4), the
ones of (7) are relatively far from Upb. Compared to CSD, a
saving of 50% in Ath is obtained by (7) for N=56.

Finally, to decide which » expression to use depends
actually on the design requirements. If area is targeted, (4) is
used. But in case speed or power are a concern, (7) is suitable.

IV. RADIX-2": OVERFLOW SAFETY

In fixed-point representation, an overflow risk in SCM is
possible. It might be caused by uncontrolled left-shift spans,
especially for the last partial product (PP). Thus, lower bounds
on the maximum left-shift must be carefully considered to
ensure an overflow safety— this is more likely to the detriment
of the optimization of the number of additions [3]. As far as
we are aware, this issue has never been addressed in SCM
despite the big number of proposed heuristics.

In RADIX-2', overflow safety is easy to prove. We consider
two nonnegative numbers, C and X, with n and m bit-lengths,
respectively. In two’s complement representation, the product
P=CxX needs ntm+2 bits to be complete, i.e., without
truncation. We can write: P=p,, .1 Ppim =" P1 Po; Where

Pnema 18 the sign bit. To be sure there is no overflow risk; we

must prove that the sign-bit of the last PP is set at most at the
n+m+1 position. We write:

o mly Ly
P= S0 xxx2i= S (-1 X |0y (= 1) x| X[x 217 = Ser.
0 J=0 ' 0

where the last PP is PP(,_=(=1)" x|Q;|x(~ 1) x| X|x 21
The maximal positive values that |0} and |X]| can take are 2"
and 2", respectively, to which corresponds a maximal PP of
max(PP(,, ) /H):(—I)C"”m x2mm  In this case, 2" occupies the

n+m position, plus the sign bit just after at the n+m+1 position.
This proves that in RADIX-2" overflow never occurs.

V. RADIX-2": FURTHER IMPROVEMENTS

The objective is to decrease Avg without increasing Upb.
Avg is successively reduced in two steps: by the utilization of
a redundant recoding, followed by a Common Digit
Elimination (CDE) step on the PP set. In RADIX-2", CDE is
already applied on the odd-digits () by the recoding itself. A
second order of CDE can be applied again on the Q; terms
thanks to redundancy. We present hereafter a linear runtime
Redundant Radix-2" Recoding (R3) with a better Avg while
preserving the same Upb as in RADIX-2".

Equation (1) can be rewritten in more details as
(N+1)/r=1

c=

j=0
with m; €{0,1,3,5,..., 2711 | and &; { 0,1.2,..., 7—1}.

(_ I)Czy’+r—l x (mj X 2kj )X 21 (8)

To enable CDE at the Q; level, we announce the following
theorem.

Theorem 1. Any digit Q; € DS (2’) can be represented in a
combination of digits Pj; e DS(ZS ), such as s is a divider of r.

The proof of this theorem is given in [12]. When Th. (1) is
(N+1)/r=1[ (r/5)-1
applied to eq. (1), it gives: C = D P28 |21 (9),
j=0 i=0

where p; eDS(Z“): %2‘”, 25141, .,0,.,257 - 28 }
om')={ 13,2 =1} such as [om(2)]jom(2)
with r/s=k. The major advantage of Theorem (1) is that it
yields an exponential reduction (1/2*") of the number of
odd-digits in (9) in comparison to (1), but at the expense of a
linear increase (k1) in the number of additions. Theorem (1)
allows a recursive recoding which enabled to design efficient
variable multipliers [12] and multi-precision multipliers [13].

:2(/&1)3-

Corollary 1. In radix-2', Qj‘ =u; x 2l (1) XV; x2" , where:
v €0, 13,5 .27 1) 1 e 0,12, r—1)3
h, €{0,1,2,....(r/2)~1}; and e, € {0,1}-

Proof. This corollary is a direct consequence of Theorem (1)
applied for 7/s=2. This means that Q; digit, which is »+1 bit-
length, is split into two overlapping sub-digits P;, and P;;, each
of 7/2+1 bit-length. This assumes that  is even. If r is odd,
Theorem (2) in [12] is applied instead of Theorem (1). For

. (N+)/r-1
r/s=2, equation (9) becomes: C= Z(Pjo +Pﬂx2r/2)x2rj- Note
=0
that Q; = Pj,+P; x27/2, and that Pj and P have exactly the

same properties as (J;, which means that they can be expressed
in the same way Q; is written in (8). Thus, we get
(N+1)/r-1
C= % a2l 1)y 2 2
Jj=0

Because addition is a non-injective function, the quintuplet
(u;, I, e, v;, h)) is not unique; several ones might exist for the
same |Qj| value. For instance, 0j|=35 can be expressed as
35=1x2°+3x2%, or 35=5x2-5x2°, or 35=7x2*+7x2".
Consequently, Eq. (10) is a Redundant Radix-2" Recoding
(R3) [10] of the constant C.

Corollary (1) is just one case (r/s=2) among many others. A
number of Q; partitionings are possible (r/s=3, 4, 5, ...), but
higher values of 7/s increase the number of sub-digits (u;, v;,
w;, b, Zj, ...), which makes (10) difficult to handle.

R3 algorithm is illustrated hereafter for the particular case
of 21<N<83. For this interval, optimal Upb in RADIX-2" is
attained with =4 (see the Upb formula). To preserve
optimality in Upb for R3, the trick here is to use sub-digits (P
and P;) with s=4, which means that for Q; ”=2x4=8. Hence,
with (s, r)=(4, 8) optimality in Upb is guaranteed.

For r=8, 0< |Q/| <128, and (10) becomes:

(10)




(N+1)/8-1

C= (uj><211' +(=1)% ><vj><2h/ )x (—1)"8/‘+7 x 28/
j=0
(N+1)/8-1
S 22, <y, (a1
=0

where Z) =u; x2Y 5 7y =(-1) XV ; x 2t ;u;and v, €{0,1,3,5,7};
1,e{0,0,2,..,7}; h, €{0.1,2,3}; and e, € {0,1}
Note that |Q|=(Z,+25),. The product CxX becomes:

(N+1)/8-1

CxX= Z

j=0
The partitioning of the constant C according to (11) is
depicted in Fig. 1.

QOZ(ZlJrZZ)OX(*l)C7 (o)) :(ZIJrZZ)ZX(,l)Czs
|oooooooo|o|.......|.|........|

0, :(Z] +Zz)1 X(—l)c15

|C—1 Co C1 C2 €3 €4 C5C6 C7 Cg Cy C1o €11 C12€13C14 C15C16C17 C18C19 C20 C21C22 Cz}|
1
C=0yx2°+0, x2% +0, x2!°

23+1 bits ~ 8+1 bits
Fig. 1. Partitioning of a 23-bit constant C using R3 algorithm.

[(M, x)()pr’ +(—1)e’ x(vj ><X)><2h’ ]x(—l)“x’” x2%  (12)

0:ca=en=0 0<(2,+2,), <128

®: ¢y, c1s, ¢ are sign bits

Since ‘Qj‘ may have several notations in (Z;, Z;), we must

carefully select among a big number of cases, the recoding
(R3) that yields an Avg not higher than RADIX-2" Avg. We

have shown that for RADIX-2", 4vg(vQ, =0)=[(N+1)/r]/2",
and based on the same reasoning developed in Section II we
can easily prove that AVg(VQj =1)=(2xr71)><[(N +1)/r]/2". Thus,
we can write: AvdvQ =0,1)=rx[(N+1)/r)/2". Keeping the
same AVg(VQ,- =0,1) value in R3 ensures that the total R3 Avg

will not be higher than RADIX-2" Avg, because the number of
PPs and the odd-digit set are identical in R3 and RADIX-2".
This means also that R3 and RADIX-2" have the same Ath.

One efficient R3 recoding is obtained using a C-program
that exhaustively explores for each odd |Q)| varying from 1 to
127, all (u;, I;, e, v;, b)) possibilities and selects the least adder
consumer combination according to the following priority
ordering: (u;,v)=(;,0); (u;v)=(1,1); (Z Z)=(1x2".2,); and
finally (Z,,2,)=(Z,,£1x2%). These two latter couples allow the
following simplifications:
ot (127 4 7, )x 287 +(Z, = 1x20)x 2878 £ =~ (1x 27 = Z, )x 28] + Z, x 28/+8 +...
e (1%27 4+ 2, )x 287 4 (Z) +1x20)x 28748 £ = oo (I 27 = Z, Jx 28) + Z; x 28/+8 & ...
In case none of those cited cases is encountered, C-program
pursues in the following priority ordering: (u;,v;)=(1,3) or
G ()=(3,3); (m)=(15) or (5,1 (ua)=(5.5); (. v))=
(1.7) or (7,1); (uay)=(1.7): (9)= (3.5) or (5.3); (1v)=(3.7)
or (7,3); (u;,v)=(5,7) or (7,5). This ordering maximizes the
occurrences of the digit “1”, then of “3”, and minimizes those
of “5” and “7” in |Q)| digits, which will more likely reduce the
number of additions in the whole recoding of the constant C.
Optimized odd |Qj| combinations are grouped in Table III.
Even |Qj| combinations are directly derived from the odd ones
using a left-shift operation.

For a given 21<N<83, optimality in Upb for RADIX-2" and
R3 is guaranteed with =4 and (s, r)=(4, 8), respectively.
To RADIX-2’ corresponds Avg(vQ, =0,1)=[(N +1)/4]/2.

Counting the number of u=1, v~=0, and v~=1 in both the odd
and even |Q;| of Table III, we can easily prove that for R3,
Avg(wv; =0)=24x[(N +1)/8]/128 and
Avg(vu; =1)+ Avg(vv; =1)=104x[(N +1)/8]/128 . This gives
Avgvu, =1)+ Avg{wy, =0,1)=[ (N +1)/8] , which is equal to
Avg(VQj =0,1)- This is the formal proof that R3 Avg can not
be higher than RADIX-2" Avg.

As for Upb, R3 comprises [(N+1)/8] terms 0, each one
groups two digits (Z,Z,). Thus, the total number of PPs is
[(N+1)/4]- Since 3 odd-digits are required, Upb=[(N+1)/4]+2,
which is equal to RADIX-2" Upb. It is important to mention

that 21<N<83 was chosen just to make the demonstration
simpler (Table III), but the proofs hold true for any value of N.

TABLE III
R3 ALGORITHM: ODD AND EVEN |Q,| DIGIT RECODING FOR 21<N<83
0dd [0 | Zi=u 2V [Z,=(-1)%xv;x 2] (Zi+ Z,), | EvenlQ)] | (Zi+ Zo),
1 1x2° 0x2° U, 2 2Tx U,
3 3x2° 0x2° U, 4 27 x U,
5 5x2° 0x2° Us 6 2"x U,
7 7x2° 0x2° U, B 2°x U,
9 1x2° 1x2° U, 10 2"x Us
11 3x2 —1x2° U, 12 2’ x U,
13 3x2° 1x2° U, 14 2% U,
15 1x2°% —1x2° Uys 16 2*x U,
17 1x2° 1x2° U, 18 2" x U,
19 5x2° —1x2° U, 20 27 % Us
21 5x2 1x2° U, 22 2'x U,
23 3x2° —1x2° U, 24 2% U,
25 3x2° 1x2° U,s 26 2" x U,
27 7x2° —1x2° U, 28 27 x U,
29 7 %2 1x2° U, 30 2" < U5
31 1x2 —1x2° Us, 32 2°x U,
33 1x2° 1x2" Us, 34 2'x Uy,
35 1x2° 3x2° Uss 36 27 x U,
37 1x2° 5x2° Us, 38 2"x Uy,
39 5x23 —1x2" Us, 40 27 x Us
41 5x2° 1x27 U, 42 2% Uy,
43 5%x2° 3x2° Uy, 44 22 x U,
45 3x2°7 —3x2° U,s 46 2% Uy,
47 3x2° —1x2° Uy, 48 27 x U,
49 3x27 1x2° Uy, 50 2" x Uys
51 3x2° 3x2° Us, 52 22 x Uy
53 3x27 5x2° Us, 54 2" x Uy,
55 7x2° —1x2° Uss 56 2% U,
57 7x2° 1x2° Us, 58 27 % Uy
59 1x2° —5x2° Us, 60 27 xUjs
61 1x2° —3x2° U, 62 2" x U,
63 1x2° —1x2° Ug 64 2°x U,
65 1x2° 1x2° Ugs 66 2" x Uy,
67 1x2° 3x2° Uy, 68 27 x Uy,
69 1x2° 5x2° Ugo 70 2" % Uss
71 1x2° 7x2° Uy 72 2° x Uy
73 5x2°7 —7x2° Up, 74 2% Uy,
75 5x2° —5x2° Uss 76 22 x U,y
77 5x27 —3x2° Uy, 78 2" x Uy
79 5x2° —1x2° Uy 80 27 % Us
81 5x27 1x2° Uy, 82 2" x Uy,
83 5x2° 3x2° Ug, 84 27 x U,
85 5x27 5x2° Uys 86 2" x Uy
87 5x2°7 7x2° Uy, 88 2°x Uy,
89 3x2° —7x2° Uyo 90 2" % Uy
91 3x2 —5x2° Uy, 92 27 x Uy,
93 3x2° —3x2° Uy 94 2'x U,
95 3x27 —1x2° Uys 96 2° x Uy
97 3x2° 1x2° Uy, 98 2" x Uy
99 3x27 3x2° Uyy 100 27 % Uss
101 3x2° 5x27 [ 102 2Tx Uy,
103 3x2° 7x2° Uy 104 25 x U,
105 7x27 —7x2° Uygs 106 2" x Us,
107 7 %27 —5x2° U,y 108 22 x U,
109 7x27 —3x2° U 110 2" % Uss
111 7x27 —1x2" U, 112 27x U,
113 7x27 1x2° Uz 114 2" x Uy
115 7x27 3x27 U, 116 27 x Uy
117 7x27 5x2° U, 118 2" x Uy
119 7x27 7x2° U 120 2°xUjs
121 1x27 —7x2° Uy 122 2" x U,
123 1x2 —5x2" [ 124 27x Uy,
125 1x27 —3x2° Upos 126 2" x Ug,
127 1x2 —1x27 [ 128 27X U,

Note that 9=1x2*+1x2 " in R3 (1 addition) and 9=1x2*~7x2° in RADIX-2"
(2 additions), taking into account that the recoding is on 8+1=9 bits (Fig. 1).
There are many cases where the number of additions is lower, as in 10, 40,...



CDE is performed in a linear runtime on the [(N+1)/8]

digits U, as an ultimate optimization step. It is illustrated by
the product P=(2631689),,xX. We first calculate the product
(P) in RADIX-2" and then in R3.
PRADIX = X0X220—XX219+X0X212—XX211+X><24—X1
with X=(Xx2)+X and X,;=(Xx2*)-X.
Pry=Usx2"+U,x2%+U, with U= Usx2*; Us=(Xx2%)+X and
U9:(X><23)+X. Note that Prapix requires 7 additions, while Pg;
needs only 4. A saving of 2 additions is due to the redundancy
(Ugand Uy), and a saving of 1 addition is due to CDE (Uy).
Avg has been exhaustively calculated for values of C
varying from 0 to 2N—1, for N=8, 16, 24, and 32. But for N=64,
we have computed Avg using 10'° uniformly distributed
random values of C. For N=64, R3 uses 14.16% less additions
than RADIX-2" (Table IV). For N<32, the saving is not
substantial because the number of U digits is low (<4). But
for N=64, it is equal to 8, offering more possibilities to CDE.
We have also determined the smallest value that requires ¢
additions, for ¢ varying from 1 to the Upb of the recoding.
Table V summarizes the results for a 32-bit constant. Note that
starting from ¢=7, higher values are given by R3.

We have compared R3 to a number of well-known non-
recoding heuristics, for which neither Avg nor Upb bounds are
known. While they exhibit lower Avg (Fig. 2), their respective
Upb could be higher (Bernstein's algorithm, Table VI).

TABLE V

R3 VERSUS RADIX-2": SMALLEST
VALUES UP TO A 32-BIT CONSTANT

TABLE IV
R3 VERSUS RADIX-2": AVERAGE
NUMBER OF ADDITIONS (4vg)

N Avg Saving g | RADIX-2" R3
RADIX-2"| R3 % 1 3 3

8 1.86 1.79 3.76 2 11 11

16 4.51 4.32 4.21 3 43 43

24 6.79 6.48 4.56 4 139 139

32 8.96 8.51 5.02 5 651 651

64 17.51 [15.037] 14.16 6 2699 2699
* Obtained from 10" uniformly | 7 33419 34971
distributed random values of C. N is 8 526491 559259
the bit-size of the constant C. For N=8, 9 8422027 17336475
the saving is exclusively due to the 10 | 134744219 | 143163547
redundancy (see Table I1I). 11 | 2155905675 | 2290385547

g: number of additions.

s --m-- RADIX-2"
—=—R3

7 —— Bernstein 1986 i
—Oo—Lefévre 2001

6 —e—BHM 1995 i
—w— Hcub 2007 -

s ——MAG 2002 .-~ i

Average Number of Additions (4vg)

é 1‘6 19 2‘4 32
Constant Bit-Size (V)
Fig. 2. Avg comparison for an N-bit constant.

VI. CONCLUSION AND FUTURE WORK

A fully-predictable and sublinear-runtime SCM heuristic
has been developed (RADIX-2") and improved (R3). In
addition to the maximum number of additions, we have also

TABLE VI
R3 and RADIX-2" VERSUS NON-RECODING ALGORITHMS: RUNTIME
COMPLEXITY AND NUMBER OF ADDITIONS OF SOME SPECIAL CASES

Algoritm | (4ABSHOABSIHEIOSBN e 7
BIGE [14] 4 5 6 o™
Bernstein [4] 8% 7 8 o02™ [5]
Hcub [7] 4 6 8 O(N®%)
BHM [6] 5 7 9 oY
Lefévre [5] 4 6 9 ON?)
RADIX-2' [1] 5 7 10 O(N/r)
R3 4 6 8 O(N)

N: Constant bit-size; » =2- W|, I(N + l)-logQ))/logQ) ; G: Greater than
R3 Upb; R3 Upb=7, 8, and 10 for N=20, 23, and 31, respectively;
x: Optimal number of additions.

determined the exact complexities for the average and adder-
depth. These three complexities are the lowest analytic bounds
known so far for the multiplication by a constant. However,
optimal bounds remain an open research problem.

Our current work deals with the application of radix-2"
arithmetic to the multiple-constant-multiplication problem.
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