Design of High-Speed and Low-Power
Finite-Word-Length PID Controllers

A K. Oudjida1 , N. Chaillet®, A. Liacha', M.L. Berrandjia1 , and M.Hamerlain'

(1) Centre de Développement des Technologies Avancées, Algiers, Algeria
(2) FEMTO-ST Institute, Besancon, France

Abstract— ASIC or FPGA implementation of a finite word-
length PID controller requires a double expertise: in control
system and hardware design. In this paper, we only focus on
the hardware side of the problem. We show how to design
configurable fixed-point PIDs to satisfy applications requiring
minimal power consumption, or high control-rate, or both
together. As multiply operation is the engine of PID, we
experienced three algorithms: Booth, modified Booth, and a
new recursive multi-bit multiplication algorithm. This later
enables the construction of finely grained PID structures with
bit-level and unit-time precision. Such a feature permits to
tailor the PID to the desired performance and power budget.
All PIDs are implemented at RTL level as technology-
independent reusable IP-cores. They are reconfigurable
according to two compile-time constants: set-point word-length
and latency. To make PID design easily reproducible, all
necessary implementation details are provided and discussed.

Index Terms— Design-Reuse, Embedded Finite-Word-
Length (FWL) Controllers, Intellectual Property (IP), Linear
Time Invariant (LTI) Systems, Low-Power and Speed
Optimization, Proportional-Integral-Derivative (PID)

I. BACKGROUND AND MOTIVATION

HE PID is by far the most commonly used feedback

controller due to its simple structure and robust
performance [1]. An important feature of this controller is
that it does not require a precise analytical model of the
system that is being controlled, which makes it very
attractive for a large class of dynamic systems. While PID is
well adapted for linear-time-invariant (LTI) systems [2], it
stands powerless for non-LTI ones. Nevertheless some
solutions exist, such as partitioning the non-LTI control
algorithm into a linear portion and a non-linear portion
[3][4][5]. The linear portion represents the major control
loop and is computed using an integrated PID, while the
non-linear portion that acts as dynamic compensation to the
linear one is performed in software using a general-purpose-
microprocessor or a DSP.

In embedded control applications, such as in small-scale
mobile robot, the control-loop-cycle is very tight and the
power budget is very limited. A low sample rate leads to
poor and degraded control-performance. And high power
consumption shortens the battery lifetime. To cope with
these two severe and antagonistic constraints, the need for
both a high-speed and low-power PID structure is of utmost
importance.

Today, design-reuse [6] is a well established design
standard that allows grasping with rapid technology changes
and increasing design complexity. It consists in the use of
predesigned technology-independent, generic and
reconfigurable IP-cores [7], most generally implemented at
register-transfer-level (RTL).

However, at RTL abstraction level, no significant

optimization results can be achieved if not undertaken at
architectural and especially at algorithmic level. To achieve
such a goal, a deep insight into PID arithmetic is necessary.
At this stage, a choice of a numeric representation format is
a crucial issue. Compared to floating-point, fixed-point
format is the best candidate for optimized designs as it is
much simpler to implement, faster, power-efficient and
requires far much less hardware resources. However, the
limited dynamic range can be source of control instability.
This problem, referred to as finite-word-length (FWL)
effect is an active research area that aims to shorten the
floating-to-fixed point conversion time while preserving
control performances [8][9].

The digital implementation of PID controllers went
through several stages of evolution, initially dominated by
the use of commercial-of-the-shelf (COTS) components and
DSP. But over the past few years, FPGAs have brought a
key advantage to digital control: the inherent parallelism of
FPGA architecture allows many independent control loops
to run at different deterministic rates without relying on
shared resources that might slow down their responsiveness
as in the case of COTS and DSP [10][11].

A survey of recent PID related works can be classified
into three categories. The biggest one includes works that
are straightforward FPGA implementations targeting
specific applications: DC-DC converter [12], temperature
control [13], motor multi-axis control [14], liquid level
control [15], and Xilinx versus Altera FPGA
implementation for result comparison [16]. The second
category proposes methodologies that analyze the FWL
effect on PID controller in order to reduce the number of
hardware resources [17][18]. And finally the third category,
paradoxically the smallest one despite the large popularity
of PID, comprises architecture-optimization works. In [19]
low-power serial and parallel multiple-channel PID
architectures are proposed for small mobile robots. In this
work, the optimization was carried out at macro-level
considering several PIDs, rather than at micro-level
(optimization of the PID itself). Nevertheless, the whole
architecture will deliver much more interesting results if
combined with an optimized PID. The second work [20]
proposes serial, parallel, and mixed PID architectures
incorporating different number (1-3) of multiplication cores.
High power consumption, even with the serial architecture,
and complex control-part are the two major shortcomings of
this proposal. Finally, in [21] an attractive optimized PID
structure based on distributed arithmetic (DA) is presented.
Although this latter exhibits interesting results in terms of
resource utilization and power consumption, it suffers from
three serious drawbacks: high latency (n+1 clock-cycles for
n bit set-point word-length), FPGA technology-dependent
as it’s essentially based upon FPGA look-up-tables (LUTs),

and inability to handle time-varying PID parameters since
they are precomputed and stored into LUTs. Nevertheless,
it’s considered as a reference design against which the
obtained results are confronted into the same conditions.

The objective of this paper is to design optimized
FWL-PID structures that overcome all above-mentioned
shortcomings, and which are especially dedicated to
embedded control applications. The PID cores are described
at RTL level. They are highly reconfigurable and
technology-independent, offering the possibility to be
mapped both on FPGA and ASIC.

To reach such a goal, a special focus was put on the
optimization of the inner arithmetic of PID. For that, we
considered two discrete forms of PID algorithm: the
commercial form [22], called also the standard or ISA form,
and the incremental form. These two forms went through
three successive types of FPGA implementations, using:
Booth multiplication algorithm (BMA) [23], modified
Booth multiplication algorithm (MBMA) [24], and a new
developed version called recursive multibit recoding
multiplication algorithm (RMRMA) [25]. Results show
gradual improvements with clear superiority over those
provided in [21]. PID control-rate and energy-consumption
savings are respectively as follows: 32% and 25% with
BMA, 177% and 23% with MBMA, 431% and 20% with
RMRMA.

Our previous paper [26] introduced a limited design-
space of PID. In this paper, we extended the design-space to
accommodate different application cases and provided all
necessary implementation details to make the design easily
reproducible.

The paper is organized as follows. In this section we
outlined the main requirement specifications for embedded
PID controller. Section II introduces the two mostly-used
discrete versions of PID algorithm. Section III, IV and V
deal with BMA, MBMA and RMRMA implementations,
respectively. A discussion around the obtained results is
given in section VI. Section VII describes the verification
method, while Section VIII shows how the FWL-effect is
tackled. And finally some concluding remarks in Section
XI.

II. THE TWO MOSTLY-USED DISCRETE VERSIONS OF PID

A typical closed-loop system using a PID controller is
shown in Fig. 1, where u.(k), y(k), and u(k) are the discrete
signal quantities at the k™ sampling instant of the reference
set-point, the process-feedback measured output, and the
PID controller output, respectively.

luc(k)
Input y(k) u(k) Output
Interface Interface
A
Process under
Control

Fig. 1. Typical closed-loop control system using a PID

PID
Controller

In digital control, commercial and incremental forms are
the two mostly-used discrete PID versions [1][22]. They are

denoted by recurrent equations (1) and (2), respectively, and
their corresponding coefficients are grouped in Table I.
Equations (1) and (2) are fully detailed in the Appendix.

u(k)=P(k)+ 1(k)+D(k) (1)
Where P(k)=4-u,(k)+B- y(k) ;

ek —1)=u,(k-1)-y(k 1) ;
elk=2)=u (k=2)=ylk-2)-

TABLEI
COEFFICIENTS OF DISCRET RECURRENT EQUATIONS

Coefficients Commercial PID Incremental PID

T T
A K, b K |1+ +-2¢
T
T
B -K, 71<,,[1+2—"]
T\‘
Ts Td
c o A
H &
T, +NT, -
L K, T,N
T, +NT, -

K, is the proportional gain; 7; and 7, are the integral and
derivative times, respectively; N is the maximum
derivative gain; b is the fraction of set-point in
proportional term; and 7 is the sampling period.

To satisfy different application cases, two IP versions are
developed for each equation: with constant coefficients and
with varying coefficients (Fig. 2). This latter requires a host
side interface (HSI) to handle the runtime change of the

coefficients.
j; d Ck Reset
Mode
u.(k) v

iModc
u(k)
o > v —>
y 1

u(k) u(k)
PIDI
RN 2 20, ppp w2

@) ﬁ Rmt (b) o @ﬁ
Ck Reset $ R\le/sel
(k) u(k) (k) u(k)
o PID3 pone . PID4
y(k) Done, y(k) s K
c @ HNAN
() Din Adr Rw Cs

Fig. 2. Various PID IP-cores. (a) commercial PID with constant
coefficients; (b) commercial PID with time varying coefficients;
(c) incremental PID with constant coefficients; (b) incremental
PID with time varying coefficients;

The commercial version allows the three standard PID
functioning modes (P, PI, PID) according to Mode input
value. At the end of u(k) computation, the Done output
signal toggles during one clock cycle, and the PID enters
into sleep mode (whole internal activity stopped except for
clocking and HSI) for maximum energy conservation.

III. BMA BASED PID

A straightforward parallel implementation of PID
requires an amount of 7 adders/substractors and 5
multiplication cores for equation (I), and 4
adders/substractors and 3 multiplication cores for equation
(2). In digital hardware, the total gate count scales linearly
with word length for an adder core, while it scales
quadratically for a multiplier core. Thus, any effort for a
low-power optimization of PID must be focused on the
implementation of the multiply-and-accumulate (MAC)
function (X.Y) [27]. In this work, the optimization effort is
rather concentrated on the double MAC function (X.Y+T.Z)
called DMAC, considered as the main building block of our
PID structures. Equations (1) and (2) are partitioned
accordingly.

For FWL-PID, two’s complement fixed-point
representation is used, which is habitually expressed in QO
notation as Q,;,, The values are coded in #; bits before the
point (integer word length including 1 sign bit), and n, bits
after the point (fractional word length). The total word
length is n=n;+ n,.

Booth multiplication algorithm [23] belongs to the class
of recoding algorithm, i.e. algorithms that recode one of the
two operands to cope with signed two’s complement

multiplication. Let Y be the multiplier:
n=2

Y:—yn712"71+2yj 2/ (3)

j=0
Equation (3) can also be expressed as follows:
n—1

Y:z(yj—] _y/-)2j = ZQ/ 2./’ 4)
Jj=0 =
Where y =0 and 0, e{-1,0,1 !

Consequently, the multiplier Y is divided into n slices,
each of 2 bits. Each pair of two contiguous slices has one bit
in common. Thus, the DMAC becomes:

n-l1

X.Y+T.Z= Z(Q X)2 +Z(P r)27 5

Z[Qj.XJrPJ.)27 (0)

According to (5), Booth algorithm consists in recoding
the multiplier Y into a set of ternary numbers {~1,0,1} in

order to generate n simple partial products which are
summed subsequently. Table II summarizes the 4
possibilities that may occur. The -X can be easily formed by
adding 1 to the complement of X. A direct translation of
DMAC equation (5) into architecture (Fig. 3) requires one
extra adder and two registers in comparison with the
optimized version (Fig. 4) based on (6), called ODMAC.
Additionally, one clock cycle latency is also needed in
Fig. 3. The control-part responsible of producing the
successive couples (yj.1 , Y is
insignificant: just one multiplexer
driven by a counter.

TABLE II
BOOTH ALGORITHM

Based upon ODMAC as the _Y Y1 Operation
main building block, PID 0 0 +0
. 0 1 +X
architectures are constructed for | -X
both incremental (Fig. 5) and 1 1 -0

commercial (Fig. 6) forms, and

their implementation results (Table III) are respectively
compared to those of [21]. Comparison was made into
identical conditions using the same FPGA device (Spartan
XC2S50E-7FT256), although relatively old, as well as the
same synthesis-tool version (Xilinx ISE 9.11). In [21], only
a 16-bit word-length commercial version with constant
coefficients (without HSI) is implemented. PID1 and PID3
exhibits interesting results: 44%, 25%, and 32% savings and
62%, 35%, and 38% savings in terms of gate count, power,
and speed, respectively. PID3 exhibits higher savings but at
the expense of control-quality. Latency is rather the same
(17), which is n+1 clock cycles for all designs (PIDX).

Optimizing latency without sacrificing the three other
issues is the main objective of the next two sections.

PE vl

lﬁl ; X "O" |l—()|| ? T ll0|l

DMAC

[Rez 10
20410 X Y+T.Z
Fig. 3. Straightforward DMAC implementation
Xi $Y T& &Z
n tn n jn
.ﬁvi X "0" .W.? T"0"

VA

Yj’]yj_ Mux Mux —ézj Zj-1
(Q-X) (P;.T)
<D

N
% ODMAC
| Reg | j=0,n-1
2n+1 X.Y+T.Z

Fig. 4. Optimized DMAC implementation

uc<k)$n n iy(k)
(k) y(k)
V.
9f_\
% u(k 1)
e(k) = ‘L
Reg grﬁ u(k)
e(k-1) % B%B 2n+logy(r)+2
Reg E
e(k-2) © PID3-4

Fig. 5. Incremental PID architecture

(k) $n

n iy(k)

>| &
ui(k) y(k) ~

N
; L |
I(k)
o) | 2 £
= &)
c ~ uc(ﬁ
I(k-1
(k-1) Y“&
B
Fig. 6. Commercial PID architecture
TABLE IIT
IMPLEMENTATION RESULT COMPARISON OF MBA-BASED PID
PID Total Gate Power* Max. Clock Latency
Core Count (mW) Freq. (MHz)
PID [21] 16728 456 47
PID1 9286 (44%) 342 (25%) 62 (32%)
PID2 10661 (36%) 359 (21%) 61 (30%) 17
PID3 6337 (62%) 297 (35%) 65 (38%)
PID4 7168 (57%) 308 (32%) 62 (32%)

* : Dynamic power consumption at 47MHz; (Xx%): saving

IV. MBMA BASED PID

Equation (3) can also be rewritten as follows [24]:
(n12)-1

(n/2)- . -
Y = z<y2j71 +y2j _2)/2#1)22,/ — ZQJ 221 (7)

=0 =0
Where y =0 and O, e {~2,-1,0,1, 2}
In this case, the multiplier Y is divided into n/2 slices,

each of 3 bits, with one bit overlapping between adjacent
slices. The proof of equation (7) is given in [28]. Thus, the

DMAC equation becomes:
(n/2)~
XY+T.Z= Z[Qj X+P.T]2Y (8§
j=0

Likewise, n/2 simple partial products are generated
(Table IV). Since ODMAC is a reconfigurable RTL block,
it is parameterized to suit equation (8). The new adapted
ODMAC architecture is depicted in Fig. 7. The only
difference is that Mux(8:1) are used instead of Mux(4:1),
and (<<2.j) hardwired shifter instead (<<1.j). Compared to
BMA based PID (Table V), MBMA based one (PIDI1)
shows much more interesting results, since latency is
divided by 2 while maintaining stable power consumption
and speed. Control rate is drastically improved as its equal
to maximum clock frequency divided by latency. As the
discrete commercial form (equation 1) can accommodate the
three functioning modes, implementation of PID2 produced
the following power consumption values at 47 MHz: 268
mW, 313 mW, and 366 mW for P, PI, and PID functioning
modes, respectively.

With regard of these improvements, one is encouraged to
pursue farther [24] in reducing latency by considering larger

slices, such as:
(n/3)-1

(n/3)— . .
Y= Z{%H +Ys; +2-)’3j+1 _22)’3j+2)23j = ZQ,Q}/ ©)

J=0 J=0

Where y =0 and 0, € {-4,...,0,..,4}

But in this case, some hard partial
products are required such as 3X and -3X
which are not easy to generate. How to
circumvent this obstacle is the purpose of the

next section.
TABLEIV
MODIFIED BOOTH ALGORITHM

Y1 Yo Yo

0 0 +0
+X
+X
+2X
-2X
-X
-X
-0

Operation

—_————0 O O
—_O —, O = O

V. RMRMA BASED PID

Multiplication is a fundamental operation in digital
design. Its speed and power requirements are two critical
factors limiting the whole system performances (PID in our
case). Since the publication of Booth’s algorithm in 1951, a
huge number of improvement attempts were proposed,
especially after the publication of a generalized version of
MBA algorithm accompanied with its proof [29]. Most of
the proposals aimed to reduce the number of partial
products either by employing digital optimization
techniques [30][31][32] or by using larger slices (higher
radices) [33]. However, experience showed [34] that beyond
4-bit slices (radix 8), the complexity to generate hard partial
products can not be managed in a realistic way. In [34],
three metrics are provided for comparing the tradoffs when
employing higher radix Booth recodings: partial product
compression factor (gain), the number of hard multiples that
must be precomputed (computation complexity), and partial
product generation fanin (routing complexity).

To circumvent the problem of hard partial products in
higher radices, the idea proposed in [35] is to apply a
recursive Booth recoding on the r-bit slice. While the idea is
interesting, it relies upon a complicated mathematical
formulation, leading to a complex control circuitry and
especially to an exaggerated latency (2n/r).

TABLE V

IMPLEMENTATION RESULT COMPARISON OF MBMA-BASED PID
PID Total Gate Power* Max. Clock Latency
Core Count (mW) Freq. (MHz)

PID [21] 16728 456 47 17
PID1 10642 (36%) 350 (23%) 62 (32%)
PID2 11923 (29%) 366 (20%) 61 (30%)
PID3 7042 (58%) 303 (33%) 64 (38%) 9 @7%)
PID4 7795 (53%) 315 (31%) 62 (32%)

* : Dynamic power consumption at 47MHz; (XX%): saving

According to the multibit recoding algorithm presented in
[29], a n-bit two’s complement operand Y can be written as:

(n/r)-
0 1 2
Y= Z(y»j—l +2 Vi +2 Vi +2 Vijra T
j=0
(n/r)-1

+ 2//72)/,./-H.,z _ 2:‘71 y’j+"71) 2/‘/ — Z Qj 21‘/ (] 0)
j=0

Where y =0 ; reN";and 0, e {—2”1,...,0,...,2"’1}

In this general case, the multiplier Y is divided into n/r
slices, each of r+1 bits. Each pair of two contiguous slices

R’
n
0" X X 2X2

Ul

!
X X"0"
b

i=0,([0/2)-1

Fig. 7. Optimized DMAC architecture for r=2

has one overlapping bit. To bypass the problem of hard
partial products, MBMA (equation 7) is applied to the Q;
terms. Thus, equation (10) takes the new simpler recursive

form:
(n/r)—

Y= z[(yrf—l Y, _2~yr,'+1)20 +(y,-/+1 t YV _z'y)'j+3)22 + .

Jj=0

.
25-2)

(s + Vors =29002)2
2(L-1 .
(yljﬂ‘f} + yrj+r72 - 2'ylj+l‘*1) 2 : :| 2 ! (1)

n/r) 1
i 1 2
|: i(yr/’—l+2i + Vi _2’yr/+]+2i)22 :| 27 (12)

Jj=0 i=0
(n/r)-1[(r12)11
= { Q.l.zz'}z’f (13)
j=0 i=0 !
With 0 e {-2,-1,0,1, 2}

There is no need to prove equation (11) since it is a
combination of equations (10) and (7) which were already
proven in [29] and [28], respectively. The partitioning of
operand Y according to equation (13) is illustrated by Fig. 8.

Qo
Ooo Oo 1010 On
|o ° |o|o |0|] |o| o|0| ° |o| ° |0| ° |o| o0
Qo1 Oos| Ou O |
O
| Y-iYo Yu Y2 Vs Ya¥s Yo Y1 ¥Ys Yo YoV Y2y ymylsl
Y
LY 9y Qi
16+1 bits 8+1 bits 2+1 bits
Fig. 8. Partitioning of a 16-bit Y operand with r=8

o:y;=0

To avoid dealing with special cases, n and r must be
chosen as even numbers, with r as a divider of n. Thus, the
DMAC equation becomes:

(n/r)-1| (r/2))))

XY+T.Z= Y {Z(jS.X+Pﬁ.T) 22'} 27 (14)
j=0 i=0

Depending on r value ranging from 2 to n, PIDs with

various levels of parallelism and latencies (n/r+1) can be
automatically generated with slight control complexity. The
special cases of r=n and r=2 correspond to fully-parallel and
fully-sequential PID, respectively. In between (r=4,n/2),
partially-parallel PIDs are obtained. The outstanding
advantage of this algorithm (equation 13) is that sard partial
products are generated using simple ones (2X, X) only. For
a simplified hardware and lower power consumption, the
step-by-step sign-propagate technique is employed [36].

Obviously, equation (13) does not reduce the number of
partial products, but allows a modulable space-time
partitioning of the multibit recoding algorithm (equation
10), where n/r sets comprising each r/2 partial products can
be generated and summed either simultaneously or
iteratively. Whilst the parallel implementation of equation
(13) allows an important reduction of the critical path (using
a carry-save adder CSA), it requires too much space.
Therefore, only the serial implementation is retained. In this
case, latency drops from (n/2+1) to (n/r+1), whereas the
overhead on the total critical path, which goes through
logy(r/2) adder levels and which is equal to D in the case of
MBMA, is slightly increased D+logy(1/2). Note that we are
using a logarithmic summation tree and not a linear one
(CSA like).

An illustrative serial example with r=4 is described as
follows:

(n/4) X ~
Y= Z(MH V4 2450 +22y4‘/+2 _23)’4#3)24] (15)

j=0

(n74)1] 1 2 4
= Zz, |:Z(y4j1+2i+y4j+2[_2‘y4j+1+2[)2 l:| 2v (16)

Jj=0 i=0
(n/4)
= ﬁ:[Q/0+Q112]24] (17)

j=0
(n/4)
xrirz="So,xn)slo,x)]s
=0

The mapping of equation (18) into a serial architecture is
shown in Fig. 9. Such a case (r=4) would have required the
computation of hard partial products (7X, 5X, 3X) if the
simple form of equation (15) was used. Notice that MBMA
is a special case of RMRMA for r=2. For r=1, equation (10)
corresponds to BMA (equation 4).

Table VI comprises the implementation results of PIDs
with n=16 and r=4,8,16. For instance, PID1 with r=4 not
only achieves high improvement in latency (71%), but also
maintains positive savings in power (14%) and speed
(13%). These important achievements are partially due to
logic-trimming performed by the synthesis tool on the
constant coefficients. Such an operation is impossible in the
case of PID [21] since the coefficients are stored into LUTs.

TABLE VI

IMPLEMENTATION RESULT COMPARISON OF RMRMA-BASED PID

PID Total Gate Power* Max. Clock Latency

Core Count (mW) Freq. (MHz)
PID [21] 16728 223 47 17
PID1 4 12443 (+26%) 191 (+14%) 53 (+13%) 5 (+71%)
PIDI 8 15688 (+06%) 194 (+13%) 44 (-06%) 3 (+82%)
PID1_16 23545 (41%) 217 (+03%) 26 (-45%) 2 (+88%)
PID2 4 22962 (-37%) 256 (-15%) 43 (-08%) 5 (+71%)
PID2 8 26073 (-56%) 204 (+08%) 37 (-21%) 3 (+82%)
PID2 16 40327 (-141%) 488 (-119%) 23 (-51%) 2 (+88%)

*: Dynamic power consumption at 23MHz; PIDY _X: X =r
(+AB%): saving; (-AB%): overhead

" X

wwi

2X2X X X"0"

<

no"

o |2

o TET 22T g
0" X X2X2X X X SR

Yain1

At this stage, a key question arises: among this panoply
of PIDs, which one fits the best one’s application case? The
answer to this question is given in the next section.

VI. DISCUSSION

In embedded control, satisfactory control-rate (without
performance degradation) at minimum power consumption
is the main requirement. To select the most adequate PID
for a given application, it’s necessary to investigate how
speed, power and hardware resources scales versus r factor
for a fixed word length n. Referring to equation (14) and
aided by Fig. 9, the ODMAC architecture scales as a binary
tree with one stage of r mux(8:1) followed by Logy(r)+1
stages of adders with a total of r adders too. Thus, the total
delay cumulated by the critical path which goes through
Log,(r)+2 stages increases with O(Log(r)) complexity,
whilst latency (n/r+1) decreases linearly O(r), which makes
the maximum control-rate increases as r increases. This is
confirmed by implementation results shown in Table VII
and VIII corresponding to PID1 and PID2, respectively. The
sole exception to this general rule is PIDX n/2 which
always yields to the highest control-rate compared to
PIDX n despite the numerous tests with various n values.
This is justified since they exhibit very close latencies (3

TABLE VII

MAXIMUM POWER-CONSUMPTION AND CONTROL-LOOP-CYCLE OF PID1

PID Power* Max. Clock L Max. Control Loop

atency

Core (mW) Freq. (MHz) Cycle (MHz)
PID [21] 456 47 17 2.76
PIDI 1 342 (+25%) 62 17 3.65 (+32%)
PID1 2 350 (+23%) 62 9 7.66 (+177%)
PID1_4 431 (+05%) 53 5 10.60 (+284%)
PID1_8 365 (+20%) 44 3 14.67 (+431%)
PID1_16 244 (+46%) 26 2 13.00 (+371%)

*: Dynamic power consumption at maximum clock frequency;
PID1_X: X=r; Max. control loop cycle = Max. clock frequency / Latency

TABLE VIII
MAXIMUM POWER-CONSUMPTION AND CONTROL-LOOP-CYCLE OF PID2
PID Power* Max. Clock Latency Max. Control Loop
Core (mW) Freq. (MHz) Cycle (MHz)
PID [21] 456 47 17 2.76
PID2_1 466 (-02%) 61 17 3.59 (+30%)
PID2 2 475 (-04%) 61 9 6.78 (+146%)
PID2 4 479 (-05%) 43 5 8.60 (+211%)
PID2 8 328 (+28%) 37 3 12.33 (+347%)
PID2 16 488 (-07%) 23 2 11.50 (+317%)
*: Dynamic power consumption at maximum clock frequency;

PID2 X: X =r; Max. control loop cycle = Max. clock frequency / Latency

Vi
2l

\\/

[Reg |
Sl XYz

Fig. 9. Optimized DMAC architecture for r=4

ODMAC
i=0, (n/4)-1

and 2, respectively) and one stage difference in the critical
path (n-1 and n, respectively), but an important multiplexer
fanin difference (n/4 and n/2, respectively).

In terms of resource occupation, the total complexity
grows linearly O(r) as r multiplexers and r adders are
required by ODMAC which is the most resource consuming
block of PID architecture. This is also confirmed by the
implementation results shown in Table VI. Note that each
adder of each level of MAC and ODMAC as well as the two
ones at the output of the PID (Fig. 5 and 6) are
successively extended by one bit so that the total bit size of
the control output u(k) becomes 2n+log,(r)+2. It’s necessary
to do so to prevent the apparition of a possible overflow in
the data-path which can cause signal clipping and
instabilities in the closed loop response [37].

As for power consumption, intuitively, one would expect
to see PID1_16 of Table VII as being the most rapid and the
most power consumer too, for the reason that it exhibits the
smallest latency and the biggest total gate count! While it is
almost true for the latter (13 MHz, before the first), it is
quite the opposite for the former (244 mW, the smallest
one). The explanation 1is that power consumption
(P=05V, C, F,) depends linearly on the frequency

(Fei), which is in this case 26 MHz (the smallest one) and
also on the switched capacitance (Cs,) which describes the
average capacitance charged during each clock period
(1/F¢). In fact, Cg, depends on a number of parameter
(circuit structure, logic function, input pattern
dependence...) and not only on the total gate count (more
precisely, not only on the total physical capacitance of the
circuit). Furthermore, a study [38] that analyzed the
dynamic power consumption in Xilinx’s FPGA revealed the
following share: 60% by routing, 16% by logic, and 14% by
clocking. The reason is that routing is intensively
segmented, using pass logic and buffers.

When both high control-rate close to 13MHz and low
power are required, PID1_16 (244 mW at 13MHz) stands as
the best candidate compared to PID1 8 (323 mW at
13MHz). However, it’s noteworthy to mention that this
comparison stands valid only for the special case of 16-bit
word-length PID, for a given set of coefficients, mapped on
XC2S150E-7FT256 FPGA circuit and using Xilinx’s XST
synthesis tool, version 9.2. Results could significantly
change under other conditions, especially when considering
the logic trimming process which is essentially dependant on

the bit-arrangement of the coefficients. For a minimum
influence of the trimming operation on the synthesized
results, appropriate coefficients were used such as all Qj
terms are represented except the null one to avoid generating
null partial products that greatly simplify the circuit logic. In
fact, constant coefficients PIDs (PID1) are somehow
unpredictable with regard to r. They are coefficient
dependant. Adversely, PID2 is not involved with the
trimming process since coefficients are time varying.
Implementation results comprised in Table VIII show that
PID2 8 is the best at all aspects for the same reasons cited
above. In sum, when high control-rate is the ultimate
objective, PIDX n/2 is the best candidate whatever n value.
But in the case where both high speed and low power are
required, timing and power evaluations are necessary to
decide which PID to select: either PIDX n/2 or PIDX n.

Finally, when only low power is targeted, PIDX 1 is the
best candidate. We dealt here with extreme situations only,
but for a given couple (cr, pc) of control-rate and power
consumption, several candidates are possible. Yet, the best
PID is the one which requires the smallest gate count.

So far, speed and power have been considered in isolation
to area which becomes critical, and sometimes prohibitive,
for large word-length n due to the fact that PID is basically
built of a set of multipliers (three or five) that scale
quadratically with word length. The bigger is the area, the
higher is the cost. Consequently, another advantage of
RMRMA algorithm is to cope also with the cost issue as an
additional constraint to speed and power.

We deliberately chose Spartan2e FPGA to compare our
results with those provided in [21]. A mapping on a recent
FPGA circuit (Virtex6) using XST 12.1 version of extreme
PID2 delivered state-of-the-art results grouped in Table 1X.
Note that control-rate scaled with an average factor of 2,
while power dissipation scaled with an average factor of 45.

TABLE IX
MAXIMUM POWER-CONSUMPTION AND CONTROL-LOOP-CYCLE
OF PID2 MAPPED ON VIRTEX6

PID Number Power* Max. Clock

Max. Control Loop

Core of Slices (mW) Freq. (MHz) Latency Cycle (MHz)
PID2_1 231 23 122 17 07.17
PID2_8 1060 04 90.5 3 30.16
PID2_16 1963 13 50.4 2 25.19

*: Dynamic power consumption at maximum clock frequency;
PID2_X: X=r; Max. control loop cycle=Max.clock frequency / Latency

This is not surprising, since Spartan2e and Virtex6 were
fabricated with two differently scaled technology processes:
150 nm and 40 nm, respectively. Therefore, the physical
capacitances of the circuit in Virtex6 are relatively too much
smaller. Additionally, the supply-voltages (V) used for
internal core (Vccint) and for output blocks (Vcco) are
respectively 1.8V and 3.3V for Spartan2e, 1V and 2.5V for
Virtex6. Furthermore, the efficient advances made in CAD
tools (from Xilinx ISE 9.1 to 12.1 versions) as well as in
FPGA architecture, such as advanced segmented-routing,
much contributed to lower the power consumption [39].
Power consumption evaluation studies [38][39] based on
simulation and measurements, targeting Virtex2 and Virtex6
families revealed the following results: 5.9uW per CLB per
MHz, and 1.09 mW per 100 MHz at 38% toggle rate,
respectively. These studies roughly confirm our power
results as proximate values are obtained.

Timing and power evaluations were performed in the
following conditions. Delays were calculated for two types
of paths: Clock-To-Setup and all paths together (Pad-To-
Setup, Clock-To-Pad and Pad-To-Pad.) The Clock-To-
Setup gives more precise information on the delays than
other remaining paths, which depend in fact on I/O Block
(IOB) configuration (low/high fanout, CMOS, TTL,
LVDS...). Thus, all delays (frequencies) presented so far
are clock-to-setup delays with the highest speed grade of the
FPGA circuit. As for power, we chose the highest Vcco
voltage value (3.3 for Spartan2e and 2.5 for Virex6) with a
maximum toggle activity of 50%, which means that Flip-
Flops (FFs) toggle one time during each clock cycle. The
reason is that only simple-edge triggered FFs are used for
synthesis (no double-edge FFs).

VII. VERIFICATION METHOD

The PID design verification process went through several
steps. First equations (12) and (14) were tested with a
random C-program. Then, a severe cycle-accurate
functional verification procedure using Modelsim simulator
was applied to MAC and ODMAC as they are the main
building blocks of PID architecture. They were challenged
against a set of special test cases (visual simulation), and
then submitted to a random test for a very large number of
vectors. Once tested successfully, the RTL PID module
written in Verilog-2001 (IEEE 1364) was integrated into
Modelsim/Simulink environment for a co-simulation. At
this stage, a ZOH discrete time invariant model of a third
order continuous process (G(s)=1/(s+1)’) was chosen from
the test set used by Astrém and Higglund [1] as examples
of representative plants for the dynamics of typical
industrial processes. To derive the PID parameters, a
theoretical PID taken from Matlab component-library was
tuned using floating-point numerical representation (IEEE
754 double format). The sampling period T, was chosen
based on the magnitude of the pole time constants. For this
case Ty=10 ms. The following parameters were obtained:

K,=0.5913 ; T;i=0.0523 ; T4=0.0225 for N=10 and
b=1. Calculations give the following floating-point values
for the coefficients of commercial PID:

A=0.5913; B=-0.5913; C=0.1130; D=0.1836; E=-1.0860

To co-simulate the RTL PID, a conversion of the
coefficients to 16-bit (Qq42) fixed-point representation was
necessary. Variations were obtained:

A=0.5911; B=-0.5911; C=0.1130; D=0.1836; E=-1.0860

Note that to represent the original parameters with full-
precision, 44 bits are needed for the fractional part. Varied
simulations were performed to verify the correctness of the
PID RTL code. First, to explore the precision effect on
control quality, the control output of PIDs with various
fractional-part sizes (Qq4 , Qa2 Q420) Were compared to
that of the Matlab floating-point PID component (Fig. 10).
Simulation shows different rise-times for different
precisions. The higher is the precision; the closer is the
control output from the ideal model. The second simulation
tests the behavior of the PID after having reached the steady
state (Fig.11). For that, two perturbations are successively
exerted on control output and on the plant measure. Each
time the system recovers as expected. And finally, the third
simulation investigates the PID capabilities to track set-
points of arbitrary amplitudes and durations (Fig. 12).

After a successful functional verification, the RTL code
of PID was synthesized, placed, and routed on Xilinx’s
FPGA (Virtex-2). The three preceding co-simulations but
with timing backannotation were performed again as a last
necessary software verification step before hardware
integration of the PID into an FPGA evaluation board
(MEMEC V2MB1000).

Finally, as an ultimate validation step, a physical test of
our PIDs is performed. We built up a classical temperature
control setup (Fig. 13 and 14), which consists in a tube
comprising a halogen lamp (12 V, 21 W), a temperature
sensor (LM35), and a DC Fan (12 V, 1.68 W). Temperature
regulation inside the tube is achieved by controlling either
the intensity of the lamp, or the rotation speed of the fan.
This is carried out by the use of two PWMs, whose duty-
cycle ratios represent the PID controller output (u(k)). These
two PWMs do not act directly on the fan or on the lamp but
rather on transistors (IRF540) that control the power
consumed by the lamp and fan.

1h- S e
e i
081 | e et
' [X sdVd | | | |
:,‘ CA | | | |
306** ’:\.’777\7777\7
= N ! T Set Point (Uc)
[} | |
504” L PID (4 4)
o i l RIS PID (4 .12)
1! ! ! -
0.2 - R PID (4 .20)
(- ‘ L m——— PID Ideal Model
| | |
O L | | | | |
0 20 40 60 80 100 120 140
Time (s)
Fig.10. Fixed-point versus floating-point
1.577777T77777\ 77777 —— — — T = = =
; ; Set Point (Ue) |
: : ----- Plant Measure (Y) :
1 | . | \’\ | |
o S ki | |
a ,’ I I I I I
o 1 | | | | |
& lI | | | | |
Soslh Lol
l l l l l
O 1 1 1 1			
0 100 200 300 400 50C			
Time (s)			
Fig. 11. Perturbations after steady-state on control-			
output and on plant measure, successively			
1			
Set Point (Uc)	!		
==-9== Plant Measure (Y) ‘ s			
08 ‘ O] i			
w [}			
		I f	
306 = u . :**ﬂ’**r ***** Ir‘***			
g)‘ (.	= in		
g i Ch ! i 1			
e e			
I " X 1 '			
; SO \ l			
I			
	~		
O 1 1 1 1
0 100 200 300 400
Time (s)

Fig. 12. Set-point tracking of arbitrary amplitudes and
durations

The sensing of the actual temperature of the tube is
assured by LM35 component which delivers a voltage value
that grows linearly with temperature (1.5 volts corresponds
to 150 °C). As the maximum voltage allowed by FPGA
evaluation board (V2MB1000) is 3.3 volts, the calculation
of the real temperature (T) is done as follows:
T = [(val_opb ADC * 3.3)/1023] * 100. This allows a
temperature control with a minimum step of 0.32 °C.

The V2MB1000 board is connected through RS232 port
to a PC running a .net application which allows a real-time
display of the temperature as well as an instantaneous
tuning of the set-point.

Memec
V2MB1000
FPGA
sl Evaluation

Tube

o Lamp s
é:“l_

ectronic
Device

PMW Fun T T
PMW Lamp

Board

m

Fig. 13. Synoptic scheme of the setup

Fig. 14. Setup of temperature regulation
1: FPGA evaluation board; 2: Electronic device;
2: Tube containing a fun and a lamp; 4: PC display screen

VIII. THE FINITE WORD-LENGTH (FWL) EFFECT

Fixed-point arithmetic is employed as an approximation
of real numbers (floating-point), with a fixed bit-length of
the word used to represent data (Finite Word-Length). This
limitation leads to performance degradation (FWL effect)
mainly due to quantization of coefficients (parametric
errors) and roundoff errors subsequently cumulated during
the computation process (numeric noise). In fact, the FWL
effect is more-or-less exaggerated depending on the control
algorithm used (I/O relationship, levels of parallelism, etc)
as well as on the way the computations are performed
(number of bits, different/unique fixed point position,
round/truncation, etc). Compared to the reference floating-
point implementation, the FWL effect can be assessed using
some indicators such as transfer function sensitivity, or pole
sensitivity [40][41][42].

In fact, the objective is twofold: we need to provide an
optimal ASIC/FPGA implementation of FWL PID without
degrading control performances. To achieve such a goal, a
double expertise is required in hardware design and control
system. But usually, hardware designers do not master

control system design, and control system experts do not
have the required skills to implement and evaluate the
controllers using ASIC/FPGAs [17][43]. This is why we
propose, as hardware designers, a highly reconfigurable
(n, r) and technology-independent FWL PID that can
systematically respond to control-engineer demands after
having modelled, simulated, and evaluated the performances
provided by different bit-width fixed-point representations
using Matlab/Simulink environment, and finally opted for
an appropriate word-length (n) of the setpoint. As for
latency value (1), it depends on the application domain and
intended objectives. Precise guidelines on how to choose r
value were given in section VI.

Now that (n, r) couple is known, the FWL problem is
tackled from hardware side by simply adjusting in the RTL
code the two compile-time constants: setpoint bit-size (n)
and latency (r). The synthesis of such a PID generates an
optimal structure that not only meets the performances
specified by control-engineers, but also consumes minimum
power and hardware resources. This would not have been
possible without the use of the new highly serialisable
multi-bit multiplication algorithm (equation 13). The
incorporation of equation (13) [25] into equations (1) and
(2) as an efficient PID engine, allows the generation of PID
architectures classified as regular iterative architectures
(RIA) [44], known for their high conformity with the
principles of regularity and locality. In addition to equation
(13), we propose in [25] several new highly serialisable
multiplication algorithms, offering different features in
power, space and delay, depending on the operand size (n).
Reader is encouraged to explore these algorithms [25] to
select the appropriate one that leads to best performances of
its controller with regard to the size (n) of the setpoint.

Regularity and locality are two important features, highly
sought in hardware design as they lead to an important gain
in space and delay. Regularity is a general space feature,
where the repetitiveness of just one or few elementary
building-blocks (mux, adders and shifters of ODMAC,
Fig. 9) and their interconnection scheme (predefined netlist)
suffice to draw the whole architecture (MAC/ODMAC and
then PID). In the other hand, locality is both space and time
feature, in the sense where each building-block can only
interact with its nearest surrounding neighbours, and any
transaction from one building-block to the next is completed
in one and only one unit time delay (clock period). Because
of these two important features, our PIDs can be finely
grained at bit level in space (setpoint bit-size n, latency r)
and unit delay in time (latency 7).

Experimental results depicted in Fig. 15 illustrate the
FWL effects on temperature regulation. Reducing the
fractional-part size of the set-point beyond a certain limit (4
bits) yields to a continuous fluctuation of the temperature
inside the tube (Fig. 15.d). The best compromise is a 6-bit
fractional-part (Fig. 15.c) which ensures a correct regulation
while consuming less power and hardware resources. As
temperature regulation system has a very slow dynamic,
speed is not a concern. Therefore, the most appropriate PID
in this case is PIDX 1 as it is the least power consumer.
Adversely, for very fast dynamic systems, such as MEMS
[45] or microrobotics applications [46], PIDX n/2 is the
most adequate option as it leads to the highest control rate.

m
L

L]
=

Temperature °C
" i

G
| :
5o i - -

L (N1} L = ALL
Time (s)
50 p e L1
.~
T 7
g I f
2 % 4 i
E e (b)
=N
S
2 F—i——t e : R :
0 i0d .o 00 =0C
Time (s)
Bl — ;
O = 3
o -
g i
=5 i
s (©
Q 3
g :
[i’ L f—t f—t—— f i i —t |
C k] | EHID b i} 4c0
Time (s)
3l T T T
k-]
g |
a0 L@
o i
=3 1
QE, - 3
[_‘ -
21 + 4
v preny I et e | b | i 0 i [| '
1 1o .o] 4rn
Time (s)

Fig. 15. Effect of the setpoint fractional length on temperature regulation
(a) Floating point PID; (b) Our PID with Qp; ,s= Os.5 ; (¢) Our PID with

Qm’.n/: 0s.6 5 (d) Our PID with Qm'.nf: Os.4

IX. SUMMARY AND CONCLUSION

Despite the large popularity of PID controller, little
attention has been paid to its optimization, either for ASIC
or for FPGA integration. To break down this paradoxical
situation, a series of high-speed and low-power PIDs,
especially dedicated to embedded applications was
proposed. They are based on two discrete forms of PID
algorithm: the incremental form and the commercial form,
both with constant and time-varying coefficients. The work
focused more particularly on the commercial form with
varying coefficients as it is the most used in industry due to
the higher control-quality provided. Two types of
optimizations were carried out: architectural and algorithmic
optimizations. The former is a macro-level optimization,
based on an efficient partitioning of PID discrete-equations,
considering the double MAC (DMAC=XY+ZT) as the main
building block of PID architecture. An optimized version of
DMAC was developed (ODMAC) for less hardware
resource occupation. As for the micro-level optimization
(inner optimization of ODMAC), three multiplication
algorithms were experienced: BMA, MBMA, and a new

general and recursive version of MBMA called RMRMA.
In addition, some low-power design techniques were
incorporated, such as: sleep mode, and step-by-step
sign-propagation technique.

The implementation results of PID based upon these
three algorithms yielded to gradual improvements with a
clear superiority over results presented in [21]. For instance,
concerning PID1 2 and PIDI1 4, savings of 177%, 23%,
and 36%, and savings of 284%, 14%, and 26% are obtained
in control-rate, power consumption, and total gate count,
respectively. Additionally, analytical scaling-complexity
evaluations with respect to the couple (n,r), confirmed also
by software simulations, revealed useful information which
is summarized as follows:

o PIDX n/2 is the fastest PID that yields to the highest
control-rate (30 MHz for PID2_8 mapped on Virtex6,
with (n,1)=(16,8));

o PIDX 1 is the most power efficient PID when speed is

not a concern,;

e PIDX n and PIDX n/2 are the most efficient PIDs
when both high control-rate and low-power
dissipation are required.

Further extension to the present work is to apply the same
(or appropriate) partitioning in conjunction with RMRMA
algorithm to the set of recurrent equations of an arbitrary
number of multi-loop PID controllers taken as a whole.

Finally, the new recursive multiplication algorithm
(RMRMA), well adapted to large word-lengths, and which
was behind the drastic optimization of PID, can be
efficiently applied to a variety of advanced control
algorithms such as to linear-quadratic-gaussian (LQG) or
sliding-mode controllers, etc.

REFERENCES

[11 K. Astrdm, T. Higglund, “PID Controllers: Theory, Design, and
Tuning,” by the Instrument Society of America, Research Triangle
Park, NC, USA, 2™ Edition, ISBN: 1-55617-516-7, Copyright 1995.

[2] D. Xue et al, “Linear Feedback Control,” by the Society for Industrial
and Applied mathematics, Copyright 2007.

Available: http://www.siam.org/books/dc14/DC14Sample.pdf

[3] S. Xiaoyin et al, “A New Motion Control Hardware Architecture with
FPGA based IC-Design for Robotic Manipulators,” Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA), pp. 3520-3525, Orlando, Florida, May 2006.

[4] J.S. Kim, H.W. Jeon, and S. Jeung, “Hardware Implementation of
Nonlinear PID Controller with FPGA based on Floating Point
Operation for 6-DOF Manipulator Robot Arm,” Proceedings of the
IEEE International Conference on Control Automation and Systems
(ICROS), pp. 1066-1071, Seoul, Korea, October 2007.

[51 L. Qu, Y. Huang, and L. Ling, “Design and Implementation of
Intelligent PID Controller based on FPGA,” Proceedings of the IEEE
International Conference on Natural Computation (ICNC), pp. 511-
515,2008.

[6] M. Keating & P. Bricaud, “Reuse Methodology Manual for System
on a Chip Designs,” by the Kluwer Academic Publishers, NY, USA,
3" Edition, ISBN: 1-4020-7141-8, Copyright 2002.

[71 Reports of the International
Semiconductors (ITRS), 2007 & 2008.
Available: www.itrs.net/reports.html

[8] T. Hilaire, P. Chevrel, and J.F. Whidborne, “A Unifying Framework
for Finite Word Length Realizations,” IEEE Trans. on Circuits and
Systems, Vol. 54, N° 8,, August 2007.

[9] T. Hilaire, D. Ménard, and O. Sentieys, “Bit Accurate Roundoff Noise
Analysis of Fixed-Point Linear Controllers,” Proceedings of the IEEE

Technology Roadmap for

[10

[r}

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18

=

[19]

[26

[}

[27]

(28]

[29]

International Conference on Computer-Aided Control Systems
(CACSD), pp. 607-612, 2008.

S. Gretlein et al, “DSPs, Microprocessors and FPGAs in Control,” the
Magazine of Record for the Embedded Computing Industry (RTC
Magazine), March 2006.

E. Manmasson et al., “FPGA in Industrial Control Applications,”
IEEE Trans. on Industrial Informatics, vol. 7, N° 2, May 2011.

S. Chander, P. Agarwal, and I. Gupta, “ FPGA-based PID Controller
for DC-DC Converter,” Proceedings of the IEEE Joint International
Conference on Power Electronics, Drives and Energy Systems
(PEDES), India, 2010.

S. Yang et al, “The IP Core Design of PID Controller based on
SOPC,” Proceedings of the IEEE International Conference on
Intelligent Control and Information Processing, pp. 363-366, Dalian,
China, August 2010.

J. Lazaro et al, “Simulink/Modelsim Simulable VHDL PID Core for
Industrial SoPC Multiaxis Controllers,” Proceedings of the IEEE 32"
Annual Conference on Industrial Electronics (IECON), pp. 3007-
3011, 2006.

F. Fons, M. Fons, and E. Canto, “Custom-Made Design of a Digital
PID Control System,” Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing(ICASSP),
Vol. 3, pp. 1020-1023, 2006.

B.V. Sreenivasappa and R.Y. Udaykumar, “ Design and
Implementation of FPGA based Low Power Digital PID Controllers,”
Proceedings of the IEEE International Conference on Industrial and
Information Systems (ICIIS), pp. 568-573, 2009.

J. Lima et al, “A Methodology to Design FPGA-based PID
Controllers,” Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, pp. 2577-2583, Taipei, Taiwan,
October 2006.

I. Urriza et al, “Word Length Selection Method based on Mixed
Simulation for Digital PID Controllers Implemented in FPGA,”
Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE), pp. 1965-1970, 2008.

W. Zhao et al, “FPGA Implementation of Closed-Loop Control
Systems for Small-Scale Robot,” Proceedings of the IEEE 12"
International Conference on Advanced Robotics (ICAR), pp. 70-77,
2005.

L. Samet et al, “A Digital PID Controller for Real-Time and Multi-
Loop Control: a Comparative Study,” Proceedings of the IEEE
International Conference on Electronics, Circuits, and Systems
(ICECS), vol. 1, pp. 291-296, 1998.

Y. Fong, M. Moallem, and W. Wang, “Design and Implementation of
Modular FPGA-Based PID Controllers,” IEEE Trans. on Industrial
Electronics, Vol. 54, N° 4, pp. 1898-1906, August 2007.

B. Wittenmark, K. J. Astrom, and K.-E. Arzenin “Computer control:
An overview,” Technical Report of Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden, Apr. 2003.

Available: www.control.Ith.se/kursdr/ifac.pdf

A. D. Booth, “A Signed Binary Multiplication Te:chnique,” Quarterly
J. Mech. Appl. Math., Vol. 4, part 2, pp. 236-240,1951.

O.L. MacSorley, “High-Speed Arithmetic in Binary Computers,”
Proceedings of the IRE, Vol. 49(1), pp. 67-91, January 1961.

A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia, “A New
Recursive Multibit Recoding Algorithm for High-Speed and Low-
Power Multiplier,” Journal of Low Power Electronics (JOLPE), vol.
8, N° 5, pp. 1-16, December 2012, American Scientific Publishers
(ASP), USA.

A.K. Oudjida et al., “High-Speed and Low-Power PID Structures for
Embedded Applications,” Proceedings of the 21th edition of the
International Workshop on Power and Timing Modeling,
Optimization and Simulation PATMOS, LNCS 6951, pp. 257-266,
Springer-Verlag Editor. Madrid, Spain, September 26-29, 2011.

Y.H. Seo, and D.W. Kim, “A New VLSI Architecture of Parallel
Multiplirer-Accumulator Based on Radix-2 Modified Booth
Algorithm,” IEEE Trans. on VLSI Systems, vol. 18, N° 2, Feb. 2010.
L.P. Rubinfield, “A Proof of the Modified Booth Algorithm for
Multiplication,” IEEE Trans. On Computers, C-24, (10), pp. 1014-
1015, 1975.

H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s
Complement Binary Numbers and its Proof with Application in
Multiplier Implementation,” IEEE Trans. on Computers, vol. 39, N°
8, August 1990.

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

F. Lamberti, “Reducing the Computation Time in (Short Bit-Width)
Two’s Complement Multiplier,” IEEE Trans. on Computers, vol. 60,
N° 2, pp. 148-156, February 2011.

S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers
with a Regular Partial Product Array,” IEEE Trans. on Circuit and
Systems II, Express Brief, vol. 56, N° 5, May 2009.

J.Y. Kang, J.L. Gaudiot, “A Simple High-Speed Multiplier Design,”
IEEE Trans. on Computers, vol. 55, N° 10, Oct. 2006.

D. Crookes and M. Jiang, “Using Signed Digit Arithmetic for Low-
Power Multiplication,” Electronics Letters, vol. 43, N° 11, may 2007.

P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix
Recodings for Higher Radix Multipliers,” IEEE Trans. on Computers,
vol. 54, N°2, February 2005.

R.C. North, and W.H. Ku, “B-Bit Serial/Parallel Multipliers,” Journal
of VLSI Signal Processing, Kluwer Academic Publishers, Boston,
vol. 2, pp. 219-233, 1991.

D.A. Henlin, M.T. Fertsch, M. Mazin, and E.T. Lewis, “A 16 bitx 16
bit Pipelined Multiplier Marcrocell,” 1EEE Journal of Solid-State
Circuits, vol. SC-20, no. 2, pp. 542-547, 1985.

J.S. Kelly et al, “Design and Implementation of Digital Controllers for
Smart Structures Using Field Programmable Gate Arrays,” Smart
Material Structure Journal, PII: S0964-1726 (97) 87085-1, pp. 559-
572, Printed in the UK, 1997.

L. Shang, A.S. Kaviani, and K. Bathala, “Dynamic Power
Consumption in Virtex-II FPGA Family,” Proceedings of FPGA
Conference, pp. 157-164, Monterey, California, USA, February 2002.

Xilinx Inc., “Virtex6 FPGA: Satisfying the Insatiable Demand for
Higher Bandwidth,” PN 2403, Printed in the USA, Copyright 2009.
www.xilinx.com/publications/prod mktg/Virtex6 Product Brief.pdf
M. Gevers and G. Li, “Parametrizations in Control, Estimation and
Filtering Probems,” Springer-Verlag, 1993.

T. Hilaire and P. Chevrel, “Sensitivity-based pole and input-output
errors of linear filters as indicators of the implementation deterioration
in fixed-point context,” EURASIP Journal on Advances in Signal
Processing, vol. special issue on Quantization of VLSI Digital Signal
Processing Systems, January 2011.

B. Lopez, T. Hilaire and L.S. Didier, “Sum-of-products Evaluation
Schemes with Fixed-Point arithmetic, and their application to IIR
filter implementation,” Proceedings of the International Conference
on Design and Architecture for Signal and Image Processing
(DASIP), Karlsruhe, Germany, Oct. 2012.

M. Petko and G. Karpiel, “Semi-automatic implementation of control
algorithms in ASIC/FPGA,” Proceedings of Emerging Technologies
and Factory Automation Conference (ETFA '03), vol. 1, pp. 427- 433.
Sept. 2003.

S.K. Rao and T. Kailath, “Regular Iterative Algorithms and their
Implementation on Processor Arrays,” Proceeding of the IEEE, vol.
76, pp. 259-269, Mar. 1988.

G. Hoover et al, “Towards Understanding Architectural Tradeoffs in
Mems Closed-Loop Feedback Control,” Proceedings of the
International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES’07), pp. 95-102, Salzburg, Austria,
Sep. 30-Oct. 3, 2007.

R. Casanova et al, “Integartion of the Control Electronics for a mm’-
sized Autonomous Microrobot into a Single Chip,” Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
pp- 3007-3012, Kobe, Japan, May 12-17, 2009.

APPENDIX

Incremental form

1
T,

1

The standard version of PID controller is described in a differential equation as: u(t) =K, [e(t)+

;[e(r} dr+Ty- djl(tt)}

where e is the system error (e(t) =u, (t)— y(t)), u. is the command signal (setpoint), y is the process variable (measured

variable). K, is the proportional gain, 7; the integration time constant, and 7, the derivative time constant of the controller.

1

Using Laplace transform, u(t) is expressed in s-domain by: U(s) =K, (E(s)+ @ +5-T, E(s)] .
s-T

For a small sample interval T, the continuous time variable u(t) can be discretized using the following approximations:

J':'T‘ e(t)‘ dt ~ Zk: e(j) T, ;de(t) ~ e(k)=elk =1) k denotes the K" sampling instant (k.7}). Thus, u(t) can be rewritten as:

= di T,
u<k>=K,,-['e<k>+TLijz"oe<j>-n+nWC*T;;("-”] it b= 6)oft) o
e 1)= Kp[eo« RIS OEREE = —z)}
We calelate the difrences (k) u(k ~1)= K, -(ek)- ek~ D)+ 22| 3 e())-7, - 3 ()1,
PR e)t zﬁj O

Developing separately each term of u (k) —-u (k - 1), we obtain:

Ky (elk) el 1) = K ek} K, eli-1) S2 ie(j)-Ts—]ile(j)-Ts — kL e(h)

K, T, (e(k)_;(k_l)—e(k_l);e(k_z)JzKp'%'e(k)Kp'zé,Td celk—1)+ K, -]Ti—d-e(k—2)

A A

After simplifications, we get the following recurrent equation:

w)=u(k-1)+ K, .(1 ey ;—dJ-e(k)—Kp-[l ; 2?—[’} ek 1)k, L fi-2)

=u(k —1)+ 4-e(k)+ B-e(k —1)+C-elk -2)

This latter equation is called the incremental form of the controller. A drawback with the incremental algorithm is that it
cannot be used for P or PD controllers.

Commercial form

For better performances of PID, two corrections are performed: limitation of the derivative gain and setpoint weighting. A
pure derivative action will induce a very large amplification of measurement noise. The gain of the derivative must thus be

s-T d
1+s-T d /N
typically in the range of 3 to 20. In addition, to avoid sudden overshoots due to high variations of the setpoint, only a fraction
b of u, acts on the proportional part (b.u. - y). Hence, the improved PID algorithm becomes:

U6)= Ky {60 0) 1) 0610)

limited. This can be done by approximating the transfer function s.7; as follows: 5.7, ~ , where N is

U(s) expression is discretized such that the proportional, integral and derivative terms are separately obtained, as follows:

u(k)= P(k)+ 1(k)+ D(k), where P{k)=K,-b-U,(k)-K,-Y(k) and s(k)=r(k-1)+K, %-(Uc(k “1)-v(k-1))
To determine the derivative term D (k), we use the differential equation representing the transfer function of G, (s):

S}VTdJZ_KP.Y(S).S.Td.

Gd(s):Ud(S)_ x 51,

=_ . By performing cross products, we get: U, (s) 1+
"1+s-T,/N

Applying the inverse Laplace Transform to this latter equation, we obtain: 4, (t) =——d. ﬁ -K T M .

Consequently, the discretized form of u, (t) is: D(k)=— T . D(k)-D(k ~1) KT Y(k)-Y(k-1) .

N r, S
After simplification, we obtain: D(k) = ijﬁ D(k — 1)_ %(Y(k)— Y(k - 1)) Finally we can write:
d Ly d Ly

u(k)= P(k)+ 1(k)+ D (k) with
P()=4a-u (k)+B-y(k);
I(k)=1(k-1)+C-e(k-1);
D(k)=H D(k-1)+L- f(k) and

A=K, b; B=-K,: C=-K,- > H=—"%" 1 [=

