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Multiple Constant Multiplication Algorithm
for High Speed and Low Power Design

Abdelkrim K. Oudjida, Ahmed Liacha, Mohammed Bakiri, and Nicolas Chaillet

Abstract—In this paper, radix-2" arithmetic is applied to the
multiple constant multiplication (MCM) problem. Given a
number M of nonnegative constants with a bit-length N, we
determine the analytic formulas for the maximum number of
additions, the average number of additions, and the maximum
number of cascaded additions forming the critical path. We get
the first proved bounds known so far for MCM. In addition of
being fully-predictable with respect to the problem size (M, N),
the RADIX-2" MCM heuristic exhibits a sublinear runtime-
complexity O(MxN/r), where r is a function of (M, N). For high-
complexity problems, it is most likely the only one that is even
feasible to run. Another merit is that it has the shortest adder-
depth in comparison to the best published MCM algorithms.

Index Terms— High-Speed and Low-Power Design, Linear-
Time-Invariant (LTI) Systems, Multiplierless Single/Mutiple
Constant Multiplication (SCM/MCM), Radix-2" Arithmetic.

I. BACKGROUND AND MOTIVATION

CM is an arithmetic operation that multiplies a set of
fixed-point constants {C,, G, G,,--C,.,} with the same

fixed-point variable X. This operation dominates the
complexity of many numeric systems such as FIR/IIR filters,
DSP transforms (DCT, DFT, Walsh, ...), LTI controllers,
crypto-systems, etc. To be efficiently implemented, i.e., rapid,
compact, and low-power, MCM must avoid costly multipliers.
The hardware alternative will be multiplierless, i.e., using only
additions, subtractions, and left-shifts. We assume that
addition and subtraction have the same area/speed cost, and
that the shift is costless since it can be realized without any
gates, i.c., just by using hardwiring. Therefore, the MCM
problem is defined as the process of finding the minimum
number of addition/subtraction operations. The computational
complexity of MCM is conjectured to be NP-hard [1]. But
because the solution-space to explore is so huge, optimal
solutions require excessive runtime and become impractical
even for MCM operations of a medium complexity [1][2].
Only MCM heuristics can react in a reasonable amount of
time, producing however, suboptimal solutions.

Using the radix-2" arithmetic, we developed in a previous
work [3][4] a fully-predictable heuristic for SCM, denoted
RADIX-2" SCM. We obtained the lowest analytic bounds
known so far for SCM in adder-cost (Upb), average (4vg), and
adder-depth (Ath). Compared to the standard Canonical-
Signed-Digit (CSD) representation [5] in the case of a serial
implementation (adders connected in series), for an N-bit
constant a saving of 50% is attained at N=1134, N=128, and
N=64, in Avg, Upb, and Ath, respectively. The savings keep
increasing as N is getting larger.
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In addition, RADIX-2" SCM shows a sublinear runtime
complexity with respect to N, and the memory space required
is very small; for N=8192 corresponds a look-up table of 1024
entries only. These two features makes RADIX-2" SCM very
useful for huge constants, given that the lowest runtime
complexity of non-digit-recoding algorithms (Bernstein [6],
Lefévre [7], BHM [8], Heub [9], and MAG [10]) is O(N?) [3].
A summary of the main features of RADIX-2" SCM is given
in Table I.

The main idea of RADIX-2" SCM is that the base number
system (2") is properly adapted to the bit-length (N) of the
constant to achieve, either an optimal adder-cost (r1) [3] or a
lower adder-depth (r;) [4]. To decide which expression of (7
or r,) to choose depends actually on the design requirements.
If area is targeted, r| is used. But in case speed or power is a
concern, 7, is suitable. Note that intermediate values of r
(r1<r<r,) lead to a tradeoff between area and speed/power.

The main purpose of this work is to first apply the radix-2"
arithmetic to the MCM problem and derive the analytic
expressions for Upb, Ath, and Avg in the same way we did for
SCM [3][4]. As a second step, we look at an actual circuit
implementation through the application of RADIX-2" MCM to
the design optimization of a benchmark FIR filter.

This paper is organized as follows. Section I gives an
overview on RADIX-2" SCM. In Section II we define
RADIX-2" MCM and determine the respective metrics.
RADIX-2" MCM is confronted in Section III to some of the
best published MCM heuristics. Finally, Section IV provides
some concluding remarks and suggestions for future work.

II. RADIX-2" MCM
A nonnegative N-bit constant C is expressed in radix-2" as

(N+1)/7-1
C= i Criot +20¢,; + 28, +22¢, 0+ + 27720, 72’—1(:(/“71) x 217
j=0

(N+1)/r-1
= ijz’j ’ (1)

i=0

where] c,=cy=0and reN*". In (1), the two’s complement
representation of C is split into |_(N+1)/ r" slices (Qj ), each of
r+1 bit length (see Fig.1.a). Each pair of two contiguous slices
has one overlapping bit. A digit-set DS(Z’) corresponds to (1),
suchas 0, eDS(2")={-2"", -2 +1,...,-1,0,1,...,2"" —1,2"}.

The sign of the Q; term is given by the ¢y, bit,
and [Q]=2" xm;, with k e{012..,7—1 and m eOM2’)Ul01};
where OM2)={3.5,7,...,.2-1 -1}. OM(zr) is the set of odd
positive digits in radix-2" recoding, with ‘OM(T)‘ =27 -1,
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Fig. 1. Slice partitioning of N-bit constants in radix-2".
(a) RADIX-2" SCM, (b) RADIX-2" MCM.

TABLE II
RADIX-2"MCM FOR A NUMBER OF M NONNEGATIVE CONSTANTS WITH THE
SAME BIT-SIZE N

Metrics Equations

N+1

’
7

Adder cost | Upb(r') =M x( w +2"2 —1—M with r'=r, or r'=r,

Adder depth| Ath(r')= {Ew +7' =3 with r'=r or r’=r,
r

’

M+ Avg,, +Avg,, < Avg(r) S—-M-1+Ag +27  with

N+l

N+1

; 1’Avgm,—“{i%{’i‘f)w)x[l%)]’}’

= =

g, =(1—2*”)xMx[

Average

2/*1
1og2(2 k J
P(m’k):% » and r'=ryorr'=r

1, =W[4M-(N+1). log(2)]/log(2)

=2 M-(N+1)-l@(2):|/10g(2)

TABLE I
RADIX-2"SCM FOR A NONNEGATIVE N-BIT CONSTANT
Metrics Equations
Adder cost Upb(r) = ‘VN * fl +2"% =2 with r=r or r=r,
r
Adder depth Ath(r) = ’VN * 1~‘ +7r—=3 with r=r) or r=r,
r
—l+4vg,, +4vg,, < Avglr) <-2+ Avg,, + 2% with
M2 a8 5 o)
Avg =1-27")x , Ave = m, Ix[1-Pm, |’ +»
Average Em ’V ” —‘ Eom ; ; ik ik
ol
log,| ——
gz[mka]
P(m. ):7 , and r=ryor r=r,
Jk 2#1

=2 WN+1)-log2)]/ togl2) i =Wa4(N+1). log2)]/ log2)

W: Lambert function; [ -‘: Ceiling function.

RADIX-2" SCM can be easily extended to MCM. In MCM
a single variable X is simultaneously multiplied by a set of M

constants{C,, G, G,,-+-,C,,,}, having all the same bit-size N. In
RADIX-2" MCM, each constant C; is split into ((N +1)/r'—|
slices (Q, ), each slice of a bit-length 7+1 (see Fig. 1.b). Thus,
the maximal number of partial products (PP) is M x((N +1)/ r'—' ,

plus a maximum of 2"72_1 nontrivial PP {3xX, 5xX, 7TxX, ...,
(2"'-1)xX} that can be invoked during the PP generation
process. Aided by Fig. 1.b and using the same reasoning based
on Theorem (1) in [3], we can easily demonstrate that the
maximum number of additions (Upb) in RADIX-2" MCM is
Upb(r')=M x[(N +1)/r'|+2r'-2 =1-M .
Upb(r') is minimal for r’=2-W( M-(N+l)~log(2))/log(2).
Note that > (Fig. 1), due to the product Mx(N+1). In fact

RADIX-2" SCM is a particular case of RADIX-2" MCM for
M=1. Pursuing also the same reasoning developed in [4], we
can straightforwardly derive the analytic expressions of Avg

W: Lambert function; ’— “: Ceiling function.

and Ath (see Table II). But in real-life applications of MCM,
such as for instance in the transposed form of a FIR filter, the
coefficients will most likely have different bit-sizes. Assume
that for each constant C; corresponds a bit-size N;, the total
number of PP for a set of M constants will be equal to

M-=1
Z|—(N,- +1)/7"]. Likewise, taking this fact into account, we
i=0

can easily prove the analytic equations of Table III.

Unlike existing MCM algorithms, in RADIX-2" MCM each
constant is implemented apart, independently from the others.
But all constants share the same set of nontrivial PP. This is
illustrated by the following MCM example: Cy=(84ABS5)y,
C1=(64AB55)y, C,=(5959595B)y. To the constants Cy, C,, and
C, corresponds the bit-sizes N;=20, N=23, and N,=31,

2

respectively. Thus, for Y (N,+1)=77 the r'=r, formula in

i=0
Table III gives =4, which is the value that minimizes Upb.

Hence, the solution given by the online version [11] of
RADIX-2"MCM is
CoxX=Xx2"+Xx212 X, x 28X, x2%+.X,,

Cy xX=Xpx 224X, 321X x2 12X x 28+ X, x 24+,
Cy x X=X 22X} 22X x 22 X, x 21+ X x 2 P X, x 284X < 2° X,
with Xg=3xX=Xx2+X, X|=5xX=Xx2*+X, X,=TxX= Xx2’~X.

Note that the online version offers three solutions. The one
given above corresponds to the optimization of adder-depth.

In [4], we introduced a variant of RADIX-2" called R3. It
has a better 4vg with the same Upb and Ath. R3 MCM gives
Co xX= XX219+U75><28—U75, U75: X1X24—X1,

Cy XX =U,x2"~Ugsx2%+Ugs, U0 =Xpx2°-X), Ugs=X,x2* X,
Cy xX=Uggx 2"+ Uggx2"+Ugox 2%+ Uy, Ugg=Xox2*~Xs,
U91:X0X25—X1.

These two solutions are compared in Table IV to the ones
provided by the most efficient MCM algorithms. Note that
CSD, RADIX-2", and R3 MCM, as digit-recoding algorithms,
allow both serial and parallel implementations, while Hcub,
BHM and Lefévre’s CSP are limited to serial implementation
only due to the shared terms. This issue will be detailed
further in the next section.
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TABLE IIT
RADIX-2"MCM FOR A NUMBER OF M NONNEGATIVE CONSTANTS WITH
DIFFERENT BIT-SIZES N;

Metrics Equations
M-1
Adder cost Upb(r’) = z N, j— 1—‘ +2"7 =M  with r'=r, or r=r,
P r
Adder depth | _g4p() :me(]’\/‘)ﬂ—‘w,% with i=0..M=1, r'=r or r'=r,
7
M+ Avg, +4vg,, < Ag(r) <—M-1+4vg, +27  with
N+
A LN+ D :
Average AVg”” :(]_2 )X;:[ I } g, = ; { ; P(m/k)XD_P(mjkﬂj} ’
97
log, Iriw
P(mjk):zri,ikJrl , and r=r| or r'=r,

7 :W{4.[§(N, +1)J. log(2)}/lag(2)

i=0

r, :2-!4/{ [2(1\/ +l))»l{)g(2)}/log(2)

W: Lambert function; ( -I: Ceiling function.

III. EXPERIMENTAL RESULTS

CSD is a widespread technique used in designing the vast
majority of SCM/MCM blocks. It has many attractive
features, such as: 33% reduction over binary, ease of use, full-
predictability, suitable for serial/parallel reduction of adder
depth, and especially, adaptable to carry-save-array (CSA)
implementation because the addition terms are independent.

We have first compared RADIX-2" MCM to CSD in the
case of a carry-propagate-adder (CPA) implementation for a
number of 32-bit constants varying from 1 to 1000. The results
are reported in Table V. Note that the savings in 4vg and Upb
are not asymptotically bounded, i.e., they keep increasing as
the product MXN increases. For N=32, a saving of 50% over
CSD is attained in Avg and Upb for M=28, and M=4,
respectively. For serial Ath, an average of 40% is achieved
over CSD, independently of M. The reason is that for a fixed
N, high variations of M produce almost the same value of 7.

As for a parallel implementation based on a tree structure,
CSD Ath is lower than RADIX-2" for any value of M. The
reason is that in the parallel Ath formula, which is

’Vlog2 RN +1)/ r'ﬂ—H"—Z, the term 7' prevails over the term log as

r' increases. Therefore, lower values of ' decrease RADIX-2"

TABLE IV
MCM SOLUTION FOR THE FOLLOWING CONSTANTS:
Ci=(84AB5)u, Ci=(64AB55)u, C,=(5959595B)n

Serial Parallel
Algorithm Adder-cost | adder-depth | adder-depth
Max | Avg | Max I Avg
Hcub [9] 13 11 | 8.33 -
BHM [8] 15 6 |533 -
Lefévre’s CSP [7] 15 5 | 4.66 -
CSD [5] 34 15 |11.33| 4 [4.00
RADIX-2" MCM 19 8 1633 4 [4.00
R3 MCM 15 5 1433 ] 4 [4.00

r=r, (see Table II).
TABLE VI

RADIX-2" MCM VERSUS CSD: DECREASING VALUES OF 7' FOR A NUMBER
OF 80 NONNEGATIVE CONSTANTS WITH THE SAME BIT-SIZE N=32

r 3 4 5 6 7

RADIX-2 | 691 | 59800 | 469.50 | 407.49 | 347.85
Avg CSD 808.88

Saving (%) | 1457 | 2607 | 41.95 | 4962 | 56.99

RADIX-2' 5 6 6 7 8
At CsD 5

Saving (%) | 00.00 | —2000 | —20.00 | —40.00 | —60.00

RADIX-2 | 801 643 487 415 351
Upb CsD 1280

Saving (%) | 3742 | 4976 | 6195 | 67157 | 7257

Ath as indicated in Table VI. Note that =7 is the value that
optimizes Upb. For =3, RADIX-2" and CSD exhibit the same
Ath" while RADIX-2" Upb and Avg are still better.

We have also compared RADIX-2" MCM to the best MCM
heuristics. Fig. 2 gives an idea on how Avg evolves with
respect to the number of constants for a variation span from 1
to 100. Note that for RADIX-2" MCM the Avg curve is exact
as it directly derives from the expression given in Table II,
while for the other curves; Avg is taken only over 50 uniformly
distributed random constant sets [9]. Here a big question arises
on the accuracy of these three curves, given that a set of 50
samples is relatively insignificant compared to billions of
billions of samples when considering for example M=100.
But despite the inaccuracy of the curves, RADIX-2" MCM
shows almost the same Avg as Lefévre's CSP [7]. This means
both exhibit the same compression performance, but with an
important runtime overhead for Lefévre's CSP (see Table VII).
Note that we proved in [4] that R3 is better than RADIX-2" in
Avg. Because of their lower runtime, RADIX-2" and R3 MCM
are very useful for huge complexity problems (MXN >>).

TABLE V
RADIX-2" MCM VERSUS CSD: Avg, Ath, and Upb FOR A NUMBER OF M NONNEGATIVE CONSTANTS WITH THE SAME BIT-SIZE N=32
M ] 2 10 20 40 60 80 100 200 500 1000
- 4 5 6 7 7 7 7 9 9 9 11
[ min 1657 | 62.78 | 106.53 | 188.73 | 268.51 | 347.84 | 41129 | 722.58 | 1623.06 | 2495.50
RADIX-2" | . | 896 1856 | 64.06 | 11021 | 189.43 | 268.65 | 347.87 | 42621 | 72543 | 1623.09 | 2509.53
Avg CSD 10.11 | 2022 | 10111 | 202.22 | 40444 | 606.66 | 808.88 | 1011.11 | 2022.22 | 5055.55 | 1011111
Saving (%) 1137 | 13.15 | 3727 | 4640 | 5324 | 5572 | 56.99 58.58 64.19 67.89 7524
1 - 10 9 9 9 9 9 9 10 10 10 11
RADIX-2 y 6 6 7 8 8 8 8 9 9 9 11
16 16 16 16 16 16 16 16 16 16 16
Ath CSD y 5 5 5 5 5 5 5 5 5 5 5
. | 3750 | 4375 | 4375 | 4375 | 4375 | 4375 | 43.75 37.50 37.50 37.50 31.25
Saving (%) |, | 2000 | —20.00 | -40.00 | -60.00 | —60.00 | —60.00 | —60.00 | -80.00 | -80.00 | -80.00 | -120.00
RADIX-2' 11 19 65 111 191 271 351 427 727 1627 2511
Upb CsSD 16 32 160 320 640 960 1280 1600 3200 8000 16000
Saving (%) 3125 | 4062 | 5937 | 6531 | 7015 | 7177 | 7257 73.31 77.28 79.66 84.30

RADIX-2"MCM formulas for Avg, Upb, and Ath are taken from Table IT with =r,. For r'>5, the saving in Avg is calculated considering (min+max)/2.

...: Serial implementation (adders connected in series); //: Parallel implementation based on a tree structure. For RADIX-2", Ath"‘:[(N +1) / V,—|+I" -3, and

ath'=| log, [ (N+1)/ ]|+ ~2. For CSD MCM, dvg = M{(N+1)/3-8/9], Upb=M{[(N+1)/2]-1], anr-=[(N+1/2] -1, ana asw'=[log,[(N +1)/2T
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TABLE VII
RUNTIME COMPLEXITY OF MCM ALGORITHMS
Hcub [9] BHM [8] | Lefévre CSP[7] RAGnN([9] MADc [14] | NAIAD [15] | SIREN [15] | CSD [5] | RADIX-2" R3
O(M *xN *xlog(M xN y+M <N )O3 xNH| O >*xN>)  |OM 5N *xlog(M xN))| OM x2") | o x2V) 02"y O xN)|O(M xN /r\|O(M xN )
M: number of constants. N: bit-size of the constants. 7’=r; or r, (see Table II).
“\ N\ £, \\\\\\\\\ \\ \\\ \
\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\x* = 6 \\\\\\\ \\\\\\\\\\\\\\\ \ \
S0 \\\\\ D 5 MIIMIITITIMIMIMIMIMINMINTIIY

. e 0
60 50 100 O 40
stants (M) Number

40
Number of Con

Fig. 2. Avg comparison for 32-bit constants (r'=ry).

Neither Upb nor Ath are known at the current state-of-the-
art of MCM. This is not only because the existing heuristics
are unpredictable (no analytic formulas), but also because the
calculation of Upb and Ath requires a prohibitive runtime.
While it is feasible to roughly estimate Avg using small sets of
uniformly distributed random constants, in the case of Upb
and Ath, all possible combinations of the constants must be
explored, causing a combinatorial explosion. Therefore, the
only remaining possibility is to confront RADIX-2" Upb and
Ath to Gustafsson’s lower-bounds for MCM [12], which are

’71ng [(N+1)/2—H+M—1 and lrlogz [(N+1)/2]—‘ S respectively_

A lower bound does not state that there is a solution that
actually has an Upb or an Ath equal to the lower-bound; it
only states that there are no solutions with an Upb or an Ath
lower than the bound. Hence, if a heuristic finds a solution
with an Upb or an Ath equal to the lower bound then that
solution is optimal.

The hatched regions in Fig. 3 and 4 represent the space for
an optimal solution of Upb and Ath, respectively. In [3], we
came to a significant conclusion on the metrics: a lower Avg
does not guarantee a lower Upb or Ath. We observe that
RADIX-2" Ath™ and Ath’ remains somewhat constant;
insignificantly altered by the number of constants M that
grows from 1 up to 1000 (see Table V and Fig. 4). Such a
significant feature leads to shorter critical paths in MCM
blocks, comparatively to the existing heuristics. Note that the

serial Ath”™ can be further decreased taking r'=r, (see Table II)
but to the detriment of A4vg and Upb as shown in [4].

In fact, Ath is not only a measure of the critical-path
(speed), but also a good indicator of the power consumption.
It has been proved in [13][14] that a lower Ath results in lower
power consumption. This is because shorter paths reduce the
number of glitches which are the main factor in power
consumption. Therefore, from a power point of view, it is
often beneficial to have more adders (to a certain extent) if it
means that the Ath can be decreased [14].

Note that the best MCM algorithms can not compete with
RADIX-2" in Ath. The reason is that RADIX-2" allows a
logarithmic reduction of the adder steps (47h”), while it is not
possible in the other case. The best MCM algorithms aim to
maximize the shared terms, making the parallel reduction of
the different paths impossible. To achieve a better adder cost,
they rely either on the acyclic directed graphs (DAG) [9] or
common subexpression elimination (CSE) [7]. However, both
approaches obey to the same calculation pattern described
hereafter. A finite sequence of integers ug, u, ua, ..., Uy is
acceptable for C,, (m=1..M) if it satisfies the properties:

Fig. 3. Upb comparison for 32—b1t constants (r'=ry).

50 100 Number of Constants.

of Constants (A1

Fig. 4. Ath comparison for 32-bit constants (+'=r).
* Initial value: uy =1;
o Forall i>0, u; =s; xu; 2% +1; xuy x 20 ;

5.1 €{-101} ; and a;,b;, €N

with j k <i;

* Final value: u,x2" =C, , with ¢, eN .
The objective is to generate an acceptable sequence (u; )., q

that is as short as possible. The value ¢ is called the quality, or
length [7]. It is the condition j,k <i that is responsible of the

subsequent connection of adders in series.

As a practical example, we considered the 24™-order linear-
phase FIR filter used in [14]. The input data wordlength was
fixed to 16 bits. The symmetric impulse response is H={-710,
327, 505, 582, 398, —35, —499, —662, —266, 699, 1943, 2987,
3395, 2987, ...}/2". The set of unique positive odd integer
coefficients to be realized contains 13 elements: H,,;,={355,
327, 505, 291, 199, 35, 499, 331, 133, 699, 1943, 2987,
3395}. H,., is a well-known set of coefficients for which it is
difficult to find a good S(glution in terms of adders [14].

1

To H,,;, corresponds Y (N, +1)=134, which gives 7=5. The
i=0

RADIX-2" MCM solution [11] for H,,, yields 22 operations:
355=3+11x2°; 327=7+5x2% 505=7+2%; 291=3+9x2°;
199=7+3x2%; 35=3+2%; 499=—13+27; 331=11+5%2°;
133=5+2"; 699=—5+11x2°; 1943=9-3x2°+2'";
2987=11-3x2°+3x2'"; 3395=3+5x2+3x2'’;

with 3=1+42; 5=1+2%; 7=1+2% 9=1+2°; 11=9+2; 13=9+2%
Note that RADIX-2" requires half as many additions as

CSD (see Table VIII). It is normal that R3 gives similar results

because the bit-size of the constants is small (N,,,=12) [4].

The maximum and average adder-depths in RADIX-2" are 3

and 2.46, respectively. These are the optimal values for H,,;, as

proved by the lower depth formula (log2 [(N,,m +1)/ 2T| of [12].

Twelve Verilog versions of the transposed form of the filter
were implemented, based each on a different MCM recoding
of the coefficients. They were synthesized using the Cadence
RTL Compiler with TSMC 1P6M 0.18um CMOS process
(TSMC-Artisan standard-cell-library). The synthesis tool was
constrained to a relaxed time period of 100ns. The place &
route was performed using Cadence SoC Encounter. The
power was evaluated at 10 MHz frequency. The post-layout
results in speed, power, and area are reported in Table [X.

A strong correlation between speed/power and adder-depth
can be observed. This confirms once more the results, and
specially, the conclusion drawn in [14]. Though CSD induces
the shortest paths, the delay is slightly higher due to a longer
routing (area). The results given by RADIX-2" and R3 [4] are
among the best when considering the Speed/Power Product
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TABLE VIII
ADDER COST AND ADDER DEPTH OF THE FIR FILTER
. Maximum Average
Algorithm Adder cost adder depth | adder dfpth
DIFFAG [14] 16 7 3.92
Cl1[14] 19 5 2.84
Pasko [14] 23 4 2.69
MADc [14] 20 3 2.46
Heub* [9] 16 7 4.46
BHM* [8] 19 5 3.38
RAGn* [9] 18 10 5.07
NAIAD [15] 18 3 2.69
SIREN [15] 16 7 4.00
CSD [5] 44 3 2.46
RADIX-2" MCM 22 3 246
R3 MCM 22 3 2.46

*: Values taken from www.spiral.net. The lower bound in adder
cost is 14. The lower bound in adder-depth is 3. x: Optimal value.

(SPP). The gap in SPP will be more significant for high-order
filters as RADIX-2" and R3 are more efficient in problems of
high complexity (see Ath™ and Ath” formulas in Table V).

While the conventional metric of adder-depth was proved as
a reliable measure of the critical-path, a more accurate delay
model has been recently introduced in [16]. The latter is based
on a bit-level propagation of signals for a fine-grained analysis
of the critical path of MCM blocks. It shows that the delays of
the shift-add network estimated at bit-level are shorter than
the delays at adder level (cascaded additions).

So far, only common two-input adders were considered. As
FPGAs today support ternary adders, i.e., adders with three
inputs (3:2 compressors), the adder-cost as well as the adder-
depth can be reduced further. This is made possible by
exploiting the unused look-up-tables (LUTs) in the FPGA
carry-chain [17]. Applied to the FIR filter, the number of
additions is reduced to 19 instead of 22 since the term
1943xX, 2987xX, and 3395%X requires each just one adder.
The maximum adder-depth remains the same (3), while the
average adder-depth is reduced to 2.23. Using ternary adders,
the maximum adder-depth in RADIX-2" MCM becomes
[log,[(N+1)/7 ]|+ ~2=[ 0631 log,[ (N+1)/+||++'~2 since three
partial products can be added in each stage. However, in
smaller designs the gain in adder-depth is somewhat offset as
the ternary adders are slower due to the internal routing [17].
Conversely, it is expected that in larger designs the gain
prevails, but this has to be practically investigated.

Another design paradigm is the hybrid MCM on FPGA. By
combining embedded multipliers (hard macros) with
additions/subtractions and shifts, efficient implementation of
the MCM block can be achieved. It has been shown in [18]
that minimal speed and power values are attained with a
number m of embedded multipliers, such that 0<m<M. In
RADIX-2", we propose to map the whole set of odd-multiple
PP to embedded multipliers to reduce the adder-depth. In this
case, it becomes[ log,[(N+1)/ r'—|—|+0, where ¢ is the multiplier

delay. Note that ¢ can be finely reduced by inserting pipeline
stages as in, for instance, the 18x18 bits Xilinx's multipliers.

IV. CONCLUSION AND FUTURE WORK

A fully-predictable and sublinear-runtime MCM heuristic
with the shotrest adder-depth has been developed (RADIX-2")
and improved (R3). Its proved limits with an exact number of
additions for the average, adder-cost, and adder-depth, are the
unique analytic-bounds known so far for MCM. However,
optimal bounds remain an open research problem.

TABLE IX

POST-LAYOUT IMPLEMENTATION RESULTS OF THE FIR FILTER

. Delay* | Power+ | Area” | DelayxPower
Algorithm 09 | @ | @) | (owmw)
DIFFAG [14] 20.42 3.32 95845 67.79
C1[14] 18.63 3.21 98012 59.80
Pasko [14] 18.17 3.13 98640 56.87
MADc [14] 17.41 2.89 98157 50.31
Hcub [9] 20.63 3.38 95715 69.72
BHM [8] 19.41 3.17 97541 61.52
RAGn [9] 21.57 3.37 97967 72.69
NAIAD [15] 17.19 3.01 97876 51.74
SIREN [15] 20.06 3.28 96612 65.79
CSD [5] 18.19 3.22 110343 58.57
RADIX-2" MCM 17.48 2.93 98355 51.21
R3 MCM 17.17 3.02 98399 51.85
*: Minimum clock period. +: Total dynamic power dissipation.
#: Total area.

While the presented results apply only to a carry-propagate-
adder (CPA) implementation of MCM blocks, we are
currently exploring the radix-2" arithmetic for a carry-save-
adder (CSA) realization, required in high-speed applications.
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