
  

Abstract—In this paper, radix-2r arithmetic is applied to the 
multiple constant multiplication (MCM) problem. Given a 
number M of nonnegative constants with a bit-length N, we 
determine the analytic formulas for the maximum number of 
additions, the average number of additions, and the maximum 
number of cascaded additions forming the critical path. We get 
the first proved bounds known so far for MCM. In addition of 
being fully-predictable with respect to the problem size (M, N), 
the RADIX-2r MCM heuristic exhibits a sublinear runtime-
complexity O(M×N/r), where r is a function of (M, N). For high-
complexity problems, it is most likely the only one that is even 
feasible to run. Another merit is that it has the shortest adder- 
depth in comparison to the best published MCM algorithms.  
 

Index Terms— High-Speed and Low-Power Design, Linear-
Time-Invariant (LTI) Systems, Multiplierless Single/Mutiple 
Constant Multiplication (SCM/MCM), Radix-2r Arithmetic. 

I. BACKGROUND AND MOTIVATION 
CM is an arithmetic operation that multiplies a set of  
fixed-point constants { }0 1 2 1, , , , MC C C C −L  with the same 

fixed-point variable X. This operation dominates the 
complexity of many numeric systems such as FIR/IIR filters, 
DSP transforms (DCT, DFT, Walsh, …), LTI controllers, 
crypto-systems, etc. To be efficiently implemented, i.e., rapid, 
compact, and low-power, MCM must avoid costly multipliers. 
The hardware alternative will be multiplierless, i.e., using only 
additions, subtractions, and left-shifts. We assume that 
addition and subtraction have the same area/speed cost, and 
that the shift is costless since it can be realized without any 
gates, i.e., just by using hardwiring. Therefore, the MCM 
problem is defined as the process of finding the minimum 
number of addition/subtraction operations. The computational 
complexity of MCM is conjectured to be NP-hard [1]. But 
because the solution-space to explore is so huge, optimal 
solutions require excessive runtime and become impractical 
even for MCM operations of a medium complexity [1][2]. 
Only MCM heuristics can react in a reasonable amount of 
time, producing however, suboptimal solutions.  

Using the radix-2r arithmetic, we developed in a previous 
work [3][4] a fully-predictable heuristic for SCM, denoted 
RADIX-2r SCM. We obtained the lowest analytic bounds 
known so far for SCM in adder-cost (Upb), average (Avg), and 
adder-depth (Ath). Compared to the standard Canonical-
Signed-Digit (CSD) representation [5] in the case of a serial 
implementation (adders connected in series), for an N-bit 
constant  a saving of 50% is attained at N=1134, N=128, and 
N=64, in Avg, Upb, and Ath, respectively. The savings keep 
increasing as N is getting larger. 

In addition, RADIX-2r SCM shows a sublinear runtime 
complexity with respect to N, and the memory space required 
is very small; for N=8192 corresponds a look-up table of 1024 
entries only. These two features makes RADIX-2r SCM very 
useful for huge constants, given that the lowest runtime 
complexity of non-digit-recoding algorithms (Bernstein [6], 
Lefèvre [7], BHM [8], Hcub [9], and MAG [10]) is O(N 

3) [3]. 
A summary of the main features of RADIX-2r SCM is given 
in Table I.  

The main idea of RADIX-2r SCM is that the base number 
system (2r) is properly adapted to the bit-length (N) of the 
constant to achieve, either an optimal adder-cost (r1) [3] or a 
lower adder-depth (r2) [4]. To decide which expression of r (r1 
or r2) to choose depends actually on the design requirements. 
If area is targeted, r1 is used. But in case speed or power is a 
concern, r2 is suitable. Note that intermediate values of r 
(r1<r<r2) lead to a tradeoff between area and speed/power. 

The main purpose of this work is to first apply the radix-2r 
arithmetic to the MCM problem and derive the analytic 
expressions for Upb, Ath, and Avg in the same way we did for 
SCM [3][4]. As a second step, we look at an actual circuit 
implementation through the application of RADIX-2r MCM to 
the design optimization of a benchmark FIR filter. 

This paper is organized as follows. Section I gives an 
overview on RADIX-2r SCM. In Section II we define 
RADIX-2r MCM and determine the respective metrics. 
RADIX-2r MCM is confronted in Section III to some of the 
best published MCM heuristics. Finally, Section IV provides 
some concluding remarks and suggestions for future work.  

II. RADIX-2r MCM 
A nonnegative N-bit constant C is expressed in radix-2r as  
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where 01 ==− Ncc  and *Ν∈r . In (1), the two’s complement 
representation of C is split into ( )⎡ ⎤rN /1+  slices ( jQ ), each of 

r+1 bit length (see Fig.1.a). Each pair of two contiguous slices 
has one overlapping bit.  A digit-set ( )rDS 2  corresponds to (1), 
such as ( ) { }1111 2,12,...,1,0,1,...,12,22 −−−− −−+−−=∈ rrrrr

j DSQ .                       

The sign of the Qj term is given by the crj+r–1 bit,               
and j

k
j mQ j ×=2 , with { }1210 −∈ r,...,,,kj  and ( ) { }1,02 Ur

j OMm ∈ , 

where ( ) { }12,...,7,5,32 1 −= −rrOM . ( )rOM 2  is the set of odd 

positive digits in radix-2r recoding, with ( ) 122 2 −= −rrOM . 
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 RADIX-2r SCM can be easily extended to MCM. In MCM 
a single variable X is simultaneously multiplied by a set of M 
constants{ }0 1 2 1, , , , MC C C C −L , having all the same bit-size N. In 
RADIX-2r MCM, each constant Ci is split into ( )1 /N r′+⎡ ⎤⎢ ⎥  
slices ( ijQ ), each slice of a bit-length r'+1 (see Fig. 1.b). Thus, 

the maximal number of partial products (PP) is ( )1 /M N r′× +⎡ ⎤⎢ ⎥ , 

plus a maximum of 2r'−2−1 nontrivial PP  {3×X,  5×X, 7×X, …, 
(2r'–1–1)×X} that can be invoked during the PP generation 
process. Aided by Fig. 1.b and using the same reasoning based 
on Theorem (1) in [3], we can easily demonstrate that the maximum number of additions (Upb) in RADIX-2r MCM is 

              ( ) ( )⎡ ⎤ MrNMrUpb r −−+′+×=′ −′ 12/1 2  . 
Upb(r') is minimal for ( ) ( )( ) ( )2 1 2 / 2r W M N log log′ = ⋅ ⋅ + ⋅ .   

Note that r r′ ≥  (Fig. 1), due to the product ( )1M N× + . In fact 
RADIX-2r SCM is a particular case of RADIX-2r MCM for 
M=1. Pursuing also the same reasoning developed in [4], we 
can straightforwardly derive the analytic expressions of Avg 

and Ath (see Table II). But in real-life applications of MCM, 
such as for instance in the transposed form of a FIR filter, the 
coefficients will most likely have different bit-sizes. Assume 
that for each constant Ci corresponds a bit-size Ni, the total 
number of PP for a set of M constants will be equal to 

( )⎡ ⎤∑
−

=

′+
1

0
/1

M

i
i rN . Likewise, taking this fact into account, we 

can easily prove the analytic equations of Table III. 

Unlike existing MCM algorithms, in RADIX-2r MCM each 
constant is implemented apart, independently from the others. 
But all constants share the same set of nontrivial PP. This is 
illustrated by the following MCM example: C0=(84AB5)H, 
C1=(64AB55)H, C2=(5959595B)H. To the constants C0, C1, and 
C2 corresponds the bit-sizes N0=20, N1=23, and N2=31, 

respectively. Thus, for ( )
2

0
1 77i

i
N

=

+ =∑  the r'=r1 formula in 

Table III gives r'=4, which is the value that minimizes Upb.  
Hence, the solution given by the online version [11] of  

RADIX-2r MCM  is 
C0×X =X×219+X1×212–X1×28–X1×24+X1, 
C1×X =X0×221+X1×216–X1×212–X1×28+X1×24+X1, 
C2×X=X0×229–X2×224+X0×221–X2×216+X0×213–X2×28+X0×25−X1    
with X0=3×X=X×2+X, X1=5×X=X×22+X, X2=7×X= X×23−X. 

Note that the online version offers three solutions. The one 
given above corresponds to the optimization of adder-depth. 

In [4], we introduced a variant of RADIX-2r called R3. It 
has a better Avg with the same Upb and Ath. R3 MCM gives 
C0×X = X×219+U75×28−U75, U75= X1×24–X1, 
C1×X =U101×216−U85×28+U85, U101=X0×25–X1, U85=X1×24+X1, 
C2×X=U89×224+U89×216+U89×28+U91, U89=X0×25–X2,  
           U91=X0×25−X1. 

These two solutions are compared in Table IV to the ones 
provided by the most efficient MCM algorithms. Note that 
CSD, RADIX-2r, and R3 MCM, as digit-recoding algorithms, 
allow both serial and parallel implementations, while Hcub, 
BHM and Lefèvre’s CSP are limited to serial implementation 
only due to the shared terms. This issue will be detailed 
further in the next section. 

TABLE II 
RADIX-2r MCM FOR A NUMBER OF M NONNEGATIVE CONSTANTS WITH THE 

SAME BIT-SIZE N 
 Metrics Equations 
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W: Lambert function; ⎡ ⎤ : Ceiling function. 

TABLE I 
RADIX-2r SCM FOR A NONNEGATIVE N-BIT CONSTANT 
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W: Lambert function; ⎡ ⎤ : Ceiling function. 

Q0Q2Qk Q(N+1)/r−2 

Q1Qk+1 Q(N+1)/r−1 
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Fig. 1. Slice partitioning  of  N-bit constants in radix-2r. 
(a) RADIX-2r SCM, (b) RADIX-2r MCM. 
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TABLE V 
RADIX-2r MCM VERSUS CSD: Avg, Ath, and Upb FOR A NUMBER OF M NONNEGATIVE CONSTANTS WITH THE SAME BIT-SIZE N=32 

M 1 2 10 20 40 60 80 100 200 500 1000 
r' 4 5 6 7 7 7 7 9 9 9 11 

RADIX-2r 
min 
max 8.96 

16.57 
18.56 

62.78 
64.06 

106.53 
110.21 

188.73 
189.43 

268.51 
268.65 

347.84 
347.87 

411.29 
426.21 

722.58 
725.43 

1623.06 
1623.09 

2495.50 
2509.53 

CSD 10.11 20.22 101.11 202.22 404.44 606.66 808.88 1011.11 2022.22 5055.55 10111.11 Avg 
Saving (%) 11.37 13.15 37.27 46.40 53.24 55.72 56.99 58.58 64.19 67.89 75.24 

RADIX-2r 
… 

    // 
10 
6 

9 
6 

9 
7 

9 
8 

9 
8 

9 
8 

9 
8 

10 
9 

10 
9 

10 
9 

11 
11 

CSD 
… 

  // 
16 
5 

16 
5 

16 
5 

16 
5 

16 
5 

16 
5 

16 
5 

16 
5 

16 
5 

16 
5 

16 
5 Ath 

Saving (%) 
… 

    // 
37.50 

–20.00 
43.75 

–20.00 
43.75 

–40.00 
43.75 

–60.00 
43.75 

–60.00 
43.75 

–60.00 
43.75 

–60.00 
37.50 
–80.00 

37.50 
–80.00 

37.50 
–80.00 

31.25 
–120.00 

RADIX-2r 11 19 65 111 191 271 351 427 727 1627 2511 
CSD 16 32 160 320 640 960 1280 1600 3200 8000 16000 Upb 

Saving (%) 31.25 40.62 59.37 65.31 70.15 71.77 72.57 73.31 77.28 79.66 84.30 
RADIX-2r MCM formulas for Avg, Upb, and Ath are taken from Table II with r'=r1.

 For r'≥5, the saving in Avg is calculated considering (min+max)/2.  

…: Serial implementation (adders connected in series); //: Parallel implementation based on a tree structure. For RADIX-2r, Ath…= ( )1 / 3N r r′ ′+ + −⎡ ⎤⎢ ⎥ , and 

Ath//= ( )2 1 / 2log N r r⎡ ⎤′ ′+ + −⎡ ⎤⎢ ⎥⎢ ⎥ . For CSD MCM,  Avg = ( )1 /3 8/9M N× + −⎡ ⎤⎣ ⎦, Upb= ( )1 /2 1M N⎡ ⎤× + −⎡ ⎤⎢ ⎥⎣ ⎦ ,  Ath…= ( )⎡ ⎤ 12/1 −+N , and  Ath//= ( )⎡ ⎤⎡ ⎤2/12 +Nlog
            

TABLE VI 
RADIX-2r MCM VERSUS CSD: DECREASING VALUES OF r' FOR A NUMBER 

 OF 80 NONNEGATIVE CONSTANTS WITH THE SAME BIT-SIZE N=32 
r' 3 4 5 6 7 
RADIX-2r 691 598.00 469.50 407.49 347.85 

CSD 808.88 Avg 
Saving (%) 14.57 26.07 41.95 49.62 56.99 
RADIX-2r 5 6 6 7 8 

CSD 5 Ath// 
Saving (%) 00.00 –20.00 –20.00 –40.00 –60.00 
RADIX-2r 801 643 487 415 351 

CSD 1280 Upb 
Saving (%) 37.42 49.76 61.95 67.57 72.57 III. EXPERIMENTAL RESULTS 

CSD is a widespread technique used in designing the vast 
majority of SCM/MCM blocks. It has many attractive 
features, such as: 33% reduction over binary, ease of use, full-
predictability, suitable for serial/parallel reduction of adder 
depth, and especially, adaptable to carry-save-array (CSA) 
implementation because the addition terms are independent.  
    We have first compared RADIX-2r MCM to CSD in the 
case of a carry-propagate-adder (CPA) implementation for a 
number of 32-bit constants varying from 1 to 1000. The results 
are reported in Table V. Note that the savings in Avg and Upb 
are not asymptotically bounded, i.e., they keep increasing as 
the product M×N increases. For N=32, a saving of 50% over 
CSD is attained in Avg and Upb for M=28, and M=4, 
respectively. For serial Ath, an average of 40% is achieved 
over CSD, independently of M. The reason is that for a fixed 
N, high variations of M produce almost the same value of r'. 

As for a parallel implementation based on a tree structure,  
CSD Ath is lower than RADIX-2r for any value of M. The 
reason is that in the parallel Ath formula, which is 

( )2 1 / 2log N r r⎡ ⎤′ ′+ + −⎡ ⎤⎢ ⎥⎢ ⎥ , the term r' prevails over the term log as 
r' increases. Therefore, lower values of r' decrease RADIX-2r 

Ath as indicated in Table VI. Note that r'=7 is the value that 
optimizes Upb. For r'=3, RADIX-2r and CSD exhibit the same 
Ath// while RADIX-2r Upb and Avg are still better. 

We have also compared RADIX-2r MCM to the best MCM 
heuristics. Fig. 2 gives an idea on how Avg evolves with 
respect to the number of constants for a variation span from 1 
to 100. Note that for RADIX-2r MCM the Avg curve is exact 
as it directly derives from the expression given in Table II, 
while for the other curves; Avg is taken only over 50 uniformly 
distributed random constant sets [9]. Here a big question arises 
on the accuracy of these three curves, given that a set of 50 
samples is relatively insignificant compared to billions of 
billions of samples when considering for example M=100.  
But despite the inaccuracy of the curves, RADIX-2r MCM 
shows almost the same Avg as Lefèvre's CSP [7]. This means 
both exhibit the same compression performance, but with an 
important runtime overhead for Lefèvre's CSP (see Table VII). 
Note that we proved in [4] that R3 is better than RADIX-2r in 
Avg. Because of their lower runtime, RADIX-2r and R3 MCM 
are very useful for huge complexity problems (M×N >>). 

TABLE III 
RADIX-2r MCM FOR A NUMBER OF M NONNEGATIVE CONSTANTS WITH 

DIFFERENT BIT-SIZES Ni 
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W: Lambert function; ⎡ ⎤ : Ceiling function. 

TABLE IV 
MCM SOLUTION FOR THE FOLLOWING CONSTANTS: 
C0=(84AB5)H, C1=(64AB55)H, C2=(5959595B)H 

Serial 
adder-depth 

Parallel 
adder-depthAlgorithm Adder-cost 

Max Avg Max Avg
Hcub  [9] 13 11 8.33 – 
BHM [8] 15 6 5.33 – 
Lefèvre’s CSP [7]  15 5 4.66 – 
CSD [5] 34 15 11.33 4 4.00
RADIX-2r MCM 19 8 6.33 4 4.00
R3 MCM 15 5 4.33 4 4.00
r'=r1 (see Table II). 
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 Neither Upb nor Ath are known at the current state-of-the-
art of MCM. This is not only because the existing heuristics 
are unpredictable (no analytic formulas), but also because the 
calculation of Upb and Ath requires a prohibitive runtime. 
While it is feasible to roughly estimate Avg using small sets of 
uniformly distributed random constants, in the case of Upb 
and Ath, all possible combinations of the constants must be 
explored, causing a combinatorial explosion. Therefore, the 
only remaining possibility is to confront RADIX-2r Upb and 
Ath to Gustafsson’s lower-bounds for MCM [12], which are  

( )2 1 / 2 1log N M⎡ ⎤+ + −⎡ ⎤⎢ ⎥⎢ ⎥  and ( )2 1 / 2log N⎡ ⎤+⎡ ⎤⎢ ⎥⎢ ⎥ , respectively.   
A lower bound does not state that there is a solution that 
actually has an Upb or an Ath equal to the lower-bound; it 
only states that there are no solutions with an Upb or an Ath 
lower than the bound. Hence, if a heuristic finds a solution 
with an Upb or an Ath equal to the lower bound then that 
solution is optimal.  

The hatched regions in Fig. 3 and 4 represent the space for 
an optimal solution of Upb and Ath, respectively. In [3], we 
came to a significant conclusion on the metrics: a lower Avg 
does not guarantee a lower Upb or Ath. We observe that 
RADIX-2r Ath… and Ath// remains somewhat constant; 
insignificantly altered by the number of constants M that 
grows from 1 up to 1000 (see Table V and Fig. 4). Such a 
significant feature leads to shorter critical paths in MCM 
blocks, comparatively to the existing heuristics. Note that the 
serial Ath… can be further decreased taking r'=r2 (see Table II) 
but to the detriment of Avg and Upb as shown in [4]. 

In fact, Ath is not only a measure of the critical-path 
(speed), but also a good indicator of the power consumption.  
It has been proved in [13][14] that a lower Ath results in lower 
power consumption. This is because shorter paths reduce the 
number of glitches which are the main factor in power 
consumption. Therefore, from a power point of view, it is 
often beneficial to have more adders (to a certain extent) if it 
means that the Ath can be decreased [14].  

Note that the best MCM algorithms can not compete with 
RADIX-2r in Ath. The reason is that RADIX-2r allows a 
logarithmic reduction of the adder steps (Ath//), while it is not 
possible in the other case. The best MCM algorithms aim to 
maximize the shared terms, making the parallel reduction of 
the different paths impossible. To achieve a better adder cost, 
they rely either on the acyclic directed graphs (DAG) [9] or 
common subexpression elimination (CSE) [7]. However, both 
approaches obey to the same calculation pattern described 
hereafter. A finite sequence of integers u0, u1, u2, ..., uq is 
acceptable for Cm (m=1..M) if it satisfies the properties: 

•  Initial value: 10 =u ; 

•  For all i>0, ii b
ki

a
jii urusu 22 ××+××= ;  with ikj <, ; 

{ }1,0,1, −∈ii rs  ; and Ν∈ii ba , ; 

•  Final value: 2 qc
q mu C× = , with qc ∈Ν .  

    The objective is to generate an acceptable sequence ( ) qiiu ≤≤0
 

that is as short as possible. The value q is called the quality, or 
length [7]. It is the condition ikj <,  that is responsible of the 
subsequent connection of adders in series. 

As a practical example, we considered the 24th-order linear-
phase FIR filter used in [14]. The input data wordlength was 
fixed to 16 bits. The symmetric impulse response is H={–710, 
327, 505, 582, 398, –35, –499, –662, –266, 699, 1943, 2987, 
3395, 2987, ...}/214. The set of unique positive odd integer 
coefficients to be realized contains 13 elements: Hmin={355, 
327, 505, 291, 199, 35, 499, 331, 133, 699, 1943, 2987, 
3395}.  Hmin is a well-known set of coefficients for which it is 
difficult to find a good solution in terms of adders [14].  

To Hmin corresponds ( )
12

0
1 134i

i
N

=

+ =∑ , which gives r'=5. The 

RADIX-2r MCM solution [11] for Hmin yields 22 operations:  
355=3+11×25; 327=7+5×26; 505=–7+29; 291=3+9×25;    
199=7+3×26; 35=3+25; 499=–13+29; 331=11+5×26;  
133=5+27; 699=–5+11×26; 1943=–9–3×25+211;  
2987=11–3×25+3×210; 3395=3+5×26+3×210; 

with 3=1+2; 5=1+22; 7=–1+23; 9=1+23; 11=9+2; 13=9+22. 
Note that RADIX-2r requires half as many additions as 

CSD (see Table VIII). It is normal that R3 gives similar results 
because the bit-size of the constants is small (Nmax=12) [4]. 
The maximum and average adder-depths in RADIX-2r are 3 
and 2.46, respectively. These are the optimal values for Hmin as 
proved by the lower depth formula ( )2 1 / 2maxlog N⎡ ⎤+⎡ ⎤⎢ ⎥⎢ ⎥  of [12].  

Twelve Verilog versions of the transposed form of the filter 
were implemented, based each on a different MCM recoding 
of the coefficients. They were synthesized using the Cadence 
RTL Compiler with TSMC 1P6M 0.18µm CMOS process 
(TSMC-Artisan standard-cell-library). The synthesis tool was 
constrained to a relaxed time period of 100ns. The place & 
route was performed using Cadence SoC Encounter. The 
power was evaluated at 10 MHz frequency. The post-layout 
results in speed, power, and area are reported in Table IX.  

A strong correlation between speed/power and adder-depth 
can be observed. This confirms once more the results, and 
specially, the conclusion drawn in [14]. Though CSD induces 
the shortest paths, the delay is slightly higher due to a longer 
routing (area). The results given by RADIX-2r and R3 [4] are 
among the best when considering the Speed/Power Product 

TABLE VII 
RUNTIME COMPLEXITY OF MCM ALGORITHMS 

Hcub  [9] BHM [8] Lefèvre CSP[7] RAGn[9] MADc [14] NAIAD [15] SIREN [15] CSD [5] RADIX-2r R3 
O(M 4×N 5×log(M ×N )+M 3×N 6) O(M 3×N 4) O(M 3×N 3) O(M 2×N 3×log(M ×N )) O(M ×2N ) O(M ×2N ) O(2M×N ) O(M ×N ) O(M ×N /r') O(M ×N )
M: number of constants. N: bit-size of the constants. r'=r1 or r2 (see Table II). 

                                            
   Fig. 2. Avg comparison for 32-bit constants (r'=r1).    Fig. 3. Upb comparison for 32-bit constants (r'=r1).    Fig. 4. Ath comparison for 32-bit constants (r'=r1).  
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TABLE IX 
POST-LAYOUT IMPLEMENTATION RESULTS OF THE FIR FILTER

Algorithm 
Delay* 

 (ns) 
Power+ 
 (mw) 

Area# 
 (μm²)    

Delay×Power 
(ns×mw) 

DIFFAG [14] 20.42 3.32 95845 67.79 
C1 [14] 18.63 3.21 98012 59.80 
Pasko [14] 18.17 3.13 98640 56.87 
MADc [14] 17.41 2.89 98157 50.31 
Hcub [9] 20.63 3.38 95715 69.72 
BHM [8] 19.41 3.17 97541 61.52 
RAGn [9] 21.57 3.37 97967 72.69 
NAIAD [15] 17.19 3.01 97876 51.74 
SIREN [15] 20.06 3.28 96612 65.79 
CSD [5] 18.19 3.22 110343 58.57 
RADIX-2r MCM 17.48 2.93 98355 51.21 
R3 MCM 17.17 3.02 98399 51.85 

*: Minimum clock period. +: Total dynamic power dissipation. 
 #: Total area. 

(SPP). The gap in SPP will be more significant for high-order 
filters as RADIX-2r and R3 are more efficient in problems of 
high complexity (see Ath… and  Ath//  formulas in Table V). 

While the conventional metric of adder-depth was proved as 
a reliable measure of the critical-path, a more accurate delay 
model has been recently introduced in [16]. The latter is based 
on a bit-level propagation of signals for a fine-grained analysis 
of the critical path of MCM blocks. It shows that the delays of 
the shift-add network estimated at bit-level are shorter than 
the delays at adder level (cascaded additions). 

So far, only common two-input adders were considered. As 
FPGAs today support ternary adders, i.e., adders with three 
inputs (3:2 compressors), the adder-cost as well as the adder-
depth can be reduced further. This is made possible by 
exploiting the unused look-up-tables (LUTs) in the FPGA 
carry-chain [17]. Applied to the FIR filter, the number of 
additions is reduced to 19 instead of 22 since the term 
1943×X, 2987×X, and 3395×X  requires each just one adder. 
The maximum adder-depth remains the same (3), while the 
average adder-depth is reduced to 2.23. Using ternary adders, 
the maximum adder-depth in RADIX-2r MCM becomes  

( ) ( )3 21 / 2 0.631 1 / 2log N r r log N r r⎡ ⎤ ⎡ ⎤′ ′ ′ ′+ + − = ⋅ + + −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥  since three 
partial products can be added in each stage. However, in 
smaller designs the gain in adder-depth is somewhat offset as 
the ternary adders are slower due to the internal routing [17]. 
Conversely, it is expected that in larger designs the gain 
prevails, but this has to be practically investigated.   

Another design paradigm is the hybrid MCM on FPGA. By 
combining embedded multipliers (hard macros) with 
additions/subtractions and shifts, efficient implementation of 
the MCM block can be achieved. It has been shown in [18] 
that minimal speed and power values are attained with a 
number m of embedded multipliers, such that 0<m<M. In 
RADIX-2r, we propose to map the whole set of odd-multiple 
PP to embedded multipliers to reduce the adder-depth. In this 
case, it becomes ( )2 1 /log N r θ⎡ ⎤′+ +⎡ ⎤⎢ ⎥⎢ ⎥ , where θ  is the multiplier 
delay. Note that θ  can be finely reduced by inserting pipeline 
stages as in, for instance, the 18×18 bits Xilinx's multipliers. 

IV. CONCLUSION AND FUTURE WORK 
A fully-predictable and sublinear-runtime MCM heuristic 

with the shotrest adder-depth has been developed (RADIX-2r) 
and improved (R3). Its proved limits with an exact number of 
additions for the average, adder-cost, and adder-depth, are the 
unique analytic-bounds known so far for MCM. However, 
optimal bounds remain an open research problem. 

While the presented results apply only to a carry-propagate-
adder (CPA) implementation of MCM blocks, we are 
currently exploring the radix-2r arithmetic for a carry-save-
adder (CSA) realization, required in high-speed applications. 
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TABLE VIII 
ADDER COST AND ADDER DEPTH OF THE FIR FILTER 

Algorithm Adder cost Maximum 
adder depth 

Average 
adder depth 

DIFFAG [14] 16 7 3.92 
C1 [14] 19 5 2.84 
Pasko [14] 23 4 2.69 
MADc [14] 20 3 2.46 
Hcub* [9] 16 7 4.46 
BHM* [8] 19 5 3.38 
RAGn* [9] 18 10 5.07 
NAIAD [15] 18 3 2.69 
SIREN [15] 16 7 4.00 
CSD [5] 44 3 2.46 
RADIX-2r  MCM 22 3 2.46 
R3 MCM 22 3 2.46 

*: Values taken from www.spiral.net. The lower bound in adder 
 cost is 14.  The lower bound in adder-depth is 3. x: Optimal value.
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