Multiobjective Genetic Algorithms Program for the Optimization of an OTA for Front-End Electronics

Abstract;

The design of an interface to a specific sensor induces costs and design time mainly related to the analog part. So to reduce these costs, it should have been standardized like digital electronics. The aim of the present work is the elaboration of a method based on multiobjectives genetic algorithms (MOGAs) to allow automated synthesis of analog and mixed systems. This proposed methodology is used to find the optimal dimensional transistor parameters (length and width) in order to obtain operational amplifier performances for analog and mixed CMOS-(complementary metal oxide semiconductor-) based circuit applications. Six performances are considered in this study, direct current (DC) gain, unity-gain bandwidth (GBW), phase margin (PM), power consumption (P), area (A), and slew rate (SR). We used the Matlab optimization toolbox to implement the program. Also, by using variables obtained from genetic algorithms, the operational transconductance amplifier (OTA) is simulated by using Cadence Virtuoso Spectre circuit simulator in standard TSMC (Taiwan Semiconductor Manufacturing Company) RF 0.18 μm CMOS technology. A good agreement is observed between the program optimization and electric simulation.